18-year Follow-up of Extended Newborn Screening for Metabolic and Endocrine Disorders

대사 및 내분비 질환에 대한 광범위 신생아 선별 검사의 18년 추적 관찰

  • Song, Wung Joo (Korea Genetics Research Center (KGRC), KSZ Children's Hospital) ;
  • Lee, Sunho (Korea Genetics Research Center (KGRC), KSZ Children's Hospital) ;
  • Jeon, Young Mi (Korea Genetics Research Center (KGRC), KSZ Children's Hospital) ;
  • Kim, Sook Za (Korea Genetics Research Center (KGRC), KSZ Children's Hospital) ;
  • Jang, Mea Young (Department of Pediatrics, Chungnam National University Hospital)
  • 송웅주 (한국 유전학 연구소/KSZ 아동병원) ;
  • 이선호 (한국 유전학 연구소/KSZ 아동병원) ;
  • 전영미 (한국 유전학 연구소/KSZ 아동병원) ;
  • 김숙자 (한국 유전학 연구소/KSZ 아동병원) ;
  • 장미영 (충남대학교 부속 병원 소아과학교실)
  • Published : 2018.08.30

Abstract

Purpose: To follow up Korean patients with metabolic and endocrine disorders ascertained by Korea Genetics Research Center, and assess the long-term effectiveness of extended newborn screening program in Korea. Methods: From January 2000 to December 2017, tandem mass spectrometry and fluoroimmunoassay were employed in extended newborn screening (NBS). The NBS program obtained dried blood spots from 283,626 babies, 48 hours after birth, and screened for galactosemia, congenital hypothyroidism (CH), congenital adrenal hyperplasia (CAH), and 50 preventable inborn errors of amino acid, fatty acid, and organic acid metabolism. Results: 28 cases of amino acid disorders, 75 cases of organic acid disorders, 27 cases of fatty acid disorders, 51 cases of urea cycle disorders, 127 cases of CH, 14 cases of CAH, and 15 cases of galactosemia were ascertained through NBS and subsequent confirmatory laboratory tests. Patients with amino acid metabolic disorders, galactosemia, CH, or CAH were more likely to have a better long-term outcome if detected early. Early management of MSUD led to much better outcome in over 90%. Despite early intervention, 32% of other organic acidemia cases still resulted in developmental delay and neurological problems. Fatty acid disorders showed varied results; those with EMA and MCAD had a good outcome, but those with VLCAD had serious neurological problems and considerably higher mortality. 75% with UCD experienced serious neurological complications and higher mortality. Conclusion: The nation-wide NBS program must be accompanied by comprehensive long-term management and physician and family education of inborn errors of metabolism for a better outcome.

목적: 한국 유전학 연구소에서 실시한 광범위 신생아 스크리닝 검사(Newborn screening, NBS)로 진단된 선천성 대사질환 및 내분비질환을 가진 한국인 환아의 추적 관찰 및 장기적인 예후를 평가하기 위하여 본 연구를 시작하였다. 방법: 2000년 1월부터 2017년 12월까지 태어난 283,626명의 신생아를 대상으로 하였으며 출생 48시간 이후에 발뒤꿈치, 혹은 정맥혈액을 채취하여 특수여과지에 묻혀 건조시켰다. 건조 혈액여지를(Dried blood spot, DBS) 이용하여 탠덤 질량 분석법과 형광 면역 측정법을 사용하여 광범위 신생아 스크리닝 검사(NBS)를 실시하였다. 신생아 스크리닝 선별검사 프로그램은 갈락토오스 혈증, 선천성 갑상선 기능 저하(Congenital hypothyroidism, CH), 선천성 부신 과형성증(Congenital adrenal hyperplasia, CAH), 아미노산, 지방산 및 유기산 대사질환등 예방 가능한 질환 50여종을 선별하여 검사를 시행하였다. 결과: 광범위 신생아 스크리닝 검사(Extended NBS)를 통해 아미노산 대사질환 28예, 유기산 대사질환 75예, 지방산 대사질환 27예, 요소회로 대사질환 51예, CH 127예, CAH 14예, 갈락토스혈증 15예가 선별하여 확진검사로 진단되었다. 아미노산 대사 장애, 갈락토스혈증, CH, CAH 환자는 조기에 발견 치료 할 경우 예후가 더 좋았다. 단풍당뇨(MSUD) 환아에서는 조기 진단 치료로 90% 이상이 정상 성장 발달을 보였다. 그러나 유기산 혈증 환아에서는 32%에서 발달 지연 및 신경학적 휴유증이 관찰되었다. 지방산 대사 질환에서는 다양한 결과가 나타났다. 단쇄지방산(SCAD, EMA)와 중쇄지방산(MCA, MCAD) 환자는 예후가 좋았으나 초장쇄지방산(VLCAD) 환자는 대부분 심각한 신경학적 장애를 보이거나 사망하였다. 요소회로 대사질환(UCD) 환아는 조기진단과 치료에도 불구하고 75%가 심각한 신경학적 합병증과 높은 사망률을 경험했다. 결론: 전국적인 신생아 스크리닝(NBS) 프로그램은 국가적인 차원에서 전국민을 대상으로 포괄적인 검사, 관리, 치료가 필요하다. 이를 위하여 숙련된 의료진과 환아의 부모 혹은 관련된 가족에 대한 특수교육이 필요하다.

Keywords

References

  1. Lee DH. The Past, Present, Future of Newborn Screening in Korea. Journal of the Korean Society of Inherited Metabolic Disease 2014;14(1):1-9.
  2. Maher S, Jjunju F PM, Taylor S. Colloquium: 100 years of mass spectrometry: Perspectives and future trends. Rev. Mod. Phys. 87(1):113-135. 2015. Bibcode: 2015RvMP...87..113M. doi:10.1103/RevModPhys.87.113.
  3. Millington DS, Terada N, Kodo K, Chace DH. A review: carnitine and acylcarnitine analysis in the diagnosis of metabolic diseases: advantages of tandem mass spectrometry. In: Matsumoto I, editor. Advances in chemical diagnosis and treatment of metabolic disorders, Vol 1. New York: John Wiley & Sons, 1992:59-71.
  4. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003;49:1797-817. doi:10.1373/clinchem.2003.022178. PMID 14578311.
  5. Jaques AM, Collins VR, Pitt J, Halliday JL. Coverage of the Victorian newborn screening programme in 2003: a retrospective population study. J Paediatr Child Health 2008;44:498-503. https://doi.org/10.1111/j.1440-1754.2008.01332.x
  6. Metz MP, Ranieri E, Gerace RL, Priest KR, Luke CG, Chan A. Newborn screening in South Australia: is it universal?. Med J Aust 2003;179:412-5. https://doi.org/10.5694/j.1326-5377.2003.tb05618.x
  7. Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR. Newborn screening: toward a uniform screening panel and system. Genetics in Medicine 2006;8:1S-11S. https://doi.org/10.1097/01.gim.0000223891.82390.ad
  8. Choi TT, Lee DH. Results of Neonatal Screening Test and Prevalence at Birth of Phenylketonuria and Congenital Hypothyroidism for 15 Years in Korea. Journal of the Korean Society of Inherited Metabolic Disease 2006:6:24-31.
  9. Lee B, Lee J, Lee J, Kim SY, Kim JW, Min WK, et al. 10-year Analysis of Inherited Metabolic Diseases Diagnosed with Tandem Mass Spectrometry. Journal of the Korean Society of Inherited Metabolic Disease 2017;17:77-84.
  10. Cho SE, Park EJ, Seo DH, Lee IB, Lee HJ, Cho DY, et al. Neonatal Screening Tests for Inherited Metabolic Disorders using Tandem Mass Spectrometry: Experience of a Clinical Laboratory in Korea. Lab Med Online Vol. 5, No. 4: 196-203, October 2015 http://dx.doi.org/10.3343/lmo.2015.5.4.196.
  11. Tan ES, Wiley V, Carpenter K, Wilcken B. Nonketotic hyperglycinemia is usually not detectable by tandem mass spectrometry newborn screening. Mol Genet Metab 2007;90:446-8. https://doi.org/10.1016/j.ymgme.2006.11.010
  12. Lindner M, Ho S, Kolker S, Abdoh G, Hoffmann GF, Burgard P. Newborn screening for methylmalonic acidurias--optimization by statistical parameter combination. J Inherit Metab Dis 2008;31:379-85. https://doi.org/10.1007/s10545-008-0892-z
  13. Magera MJ, Gunawardena ND, Hahn SH, Tortorelli S, Mitchell GA, Goodman SI, et al. Quantitative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type I. Mol Genet Metab 2006;88:16-21. https://doi.org/10.1016/j.ymgme.2005.12.005
  14. Haberle J, Pauli S, Schmidt E, Schulze-Eilfing B, Berning C, Koch HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 2003;80:302-6. https://doi.org/10.1016/j.ymgme.2003.08.002
  15. Waisbren SE, Levy HL, Noble M, Matern D, Gregersen N, Pasley K, et al. Short-chain acyl-CoA dehydrogenase (SCAD) deficiency: an examination of the medical and neurodevelopmental characteristics of 14 cases identified through newborn screening or clinical symptoms. Mol Gen Metab 2008;95:39-45. https://doi.org/10.1016/j.ymgme.2008.06.002
  16. Dantas MF, Suormala T, Randolph A, Coelho D, Fowler B, Valle D, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening. Hum Mutat 2005;26:164.
  17. Stadler SC, Polanetz R, Maier EM, Heidenreich SC, Niederer B, Mayerhofer PU, et al. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity of MCCA and MCCB mutations and impact on risk assessment. Hum Mutat 2006;27:748-59. https://doi.org/10.1002/humu.20349
  18. Koeberl DD, Millington DS, Smith WE, Weavil SD, Muenzer J, McCandless SE, et al. Evaluation of 3-methylcrotonyl-CoA carboxylase deficiency detected by tandem mass spectrometry newborn screening. J Inherit Metab Dis 2003;26:25-35. https://doi.org/10.1023/A:1024015227863
  19. Campbell CD, Ganesh J, Ficicioglu C. Two newborns with nutritional vitamin B12 deficiency: challenges in newborn screening for vitamin B12 deficiency. Haematologica 2005;90(Suppl):ECR45.
  20. Oglesbee D, Sanders KA, Lacey JM, Magera MJ, Casetta B, Strauss KA, et al. Second-tier test for quantification of alloisoleucine and branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup urine disease (MSUD). Clin Chem 2008;54:542-9. https://doi.org/10.1373/clinchem.2007.098434
  21. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based secondtier tests: the Mayo Clinic experience (2004-2007). J Inherit Metab Dis 2007;30:585-92. https://doi.org/10.1007/s10545-007-0691-y
  22. Gonzalez EC, Marrero N, Frometa A, Herrera D, Castells Newborn Screening 68 I Clin Biochem Rev Vol 31 May 2010 E, Perez PL. Qualitative colorimetric ultramicroassay for the detection of biotinidase deficiency in newborns. Clin Chim Acta 2006;369:35-9. https://doi.org/10.1016/j.cca.2006.01.009
  23. Moslinger D, Stockler-Ipsiroglu S, Scheibenreiter S, Tiefenthaler M, Muhl A, Seidl R, et al. Clinical and neuropsychological outcome in 33 patients with biotinidase deficiency ascertained by nationwide newborn screening and family studies in Austria. Eur J Pediatr 2001;160:277-82. https://doi.org/10.1007/s004310100740
  24. Weber P, Scholl S, Baumgartner ER. Outcome in patients with profound biotinidase deficiency: relevance of newborn screening. Dev Med Child Neurol 2004;46:481-4.
  25. Korean Statistical Information Service (KOSIS). http://kosis.kr/index/index.do.