References
- P.V. Kokotovic, R.E. O'Malley, P. Sannuti, Singular perturbations and order reduction in control theory: an overview, Automatica 12 (1976) 123-132. https://doi.org/10.1016/0005-1098(76)90076-5
- R.G. Phillips, Reduced order modeling and control of two-time-scale discrete systems, Int. J. Control 31 (1980) 765-780. https://doi.org/10.1080/00207178008961081
- D.S. Naidu, Singular perturbations and time scales in control theory and applications, Dyn. Contin.Discret. Impuls Sys. Ser. B: Appl. Algorithms 9 (2002) 233-278. https://doi.org/10.3934/dcds.2003.9.233
- S.R. Shimjith, A.P. Tiwari, B. Bandyopadhyay, A three-timescale approach for design of linear state regulator for spatial control of advanced heavy water reactor, IEEE Trans. Nuclear Sci. 58 (3) (2011) 1264-1276. https://doi.org/10.1109/TNS.2011.2114674
- M. Boroushaki, M.B. Ghofrani, C. Lucas, M.J. Yazdanpanah, Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy systems, IEEE Trans. Nuclear Sci. 50 (1) (Feb 2003) 159-174. https://doi.org/10.1109/TNS.2002.807856
- C. Shiguo, Z. Ruanyu, W. Peng, L. Taihua, Enhance accuracy in pole identification of system by wavelet transform de-noising, IEEE Trans. Nuclear Sci. 51 (1) (Feb. 2004) 250-255. https://doi.org/10.1109/TNS.2004.825098
- F. Previdi, S.M. Savaresi, P. Guazzoni, L. Zetta, Detection and clustering of light charged particles via system-identification techniques, Int. J. Adapt. Control Signal Process. 21 (2007) 375-390. https://doi.org/10.1002/acs.927
- S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11 (7) (1989) 674-693. https://doi.org/10.1109/34.192463
- K.C. Chou, A.S. Willsky, A. Benveniste, Multiscale recursive estimation, data fusion, and regularization, IEEE Trans. Autom. Control 39 (3) (1994) 464-478. https://doi.org/10.1109/9.280746
- D. Coca, S.A. Billings, Non-linear system identification using wavelet multiresolution models, Int. J. Control 74 (18) (2001) 1718-1736. https://doi.org/10.1080/00207170110089743
- X.W. Chang, L. Qu, Wavelet estimation of partially linear models, Comput. Stat. Data Anal. 47 (1) (2004) 31-38. https://doi.org/10.1016/j.csda.2003.10.018
- N.V. Troung, L. Wang, P.C. Young, Non-linear system modelling based on nonparametric identification and linear wavelet estimation of SDP models, In. J. Control 80 (5) (2007) 774-788. https://doi.org/10.1080/00207170601185996
- Y. Li, H.L. Wei, S.A. Billings, Identification of time-varying systems using multiwavelet basis functions, IEEE Trans. Control Sys. Technol. 19 (3) (2011) 656-663. https://doi.org/10.1109/TCST.2010.2052257
- F. He, H.L. Wei, S.A. Billings, Identification and frequency domain analysis of non-stationary and nonlinear systems using time-varying NARMAX models, Int. J. Sys. Sci. 46 (11) (2015) 2087-2100. https://doi.org/10.1080/00207721.2013.860202
- G. Heo, S.S. Choi, S.H. Chang, Thermal power estimation by fouling phenomena compensation using wavelet and principal component analysis, Nuclear Eng. Design 199 (2000) 31-40. https://doi.org/10.1016/S0029-5493(00)00249-1
- G.Y. Park, J. Park, P.Y. Seong, Application of wavelets noise-reduction technique to water-level controller, Nuclear Technol. 145 (2004) 177-188. https://doi.org/10.13182/NT04-A3468
- V.Vajpayee, S.Mukhopadhyay, A.P. Tiwari, Subspace-basedwaveletpreprocessed data-driven predictive control, INCOSE Int. Symp. 26 (s1) (2016) 357-371. https://doi.org/10.1002/j.2334-5837.2016.00337.x
- G. Espinosa-Paredes, A. Nunez-Carrera, A. Prieto-Guerrero, M. Cecenas, Wavelet approach for analysis of neutronic power using data of ringhals stability benchmark, Nuclear Eng. Design 237 (2007) 1009-1015. https://doi.org/10.1016/j.nucengdes.2006.01.020
- A. Prieto-Guerrero, G. Espinosa-Paredes, Decay ratio estimation of bwr signals based on wavelet ridges, Nuclear Sci. Eng. 160 (3) (2008) 302-317. https://doi.org/10.13182/NSE160-302
- M. Antonopoulos-Domis, T. Tambouratzis, System identification during a transient via wavelet multiresolution analysis followed by spectral techniques, Ann. Nuclear Energy 25 (6) (1998) 465-480. https://doi.org/10.1016/S0306-4549(97)00070-4
- T. Tambouratzis, M. Antonopoulos-Domis, Parameter estimation during a transient application to BW Rstability, Ann. Nuclear Energy 31 (18) (2004) 2077-2092. https://doi.org/10.1016/j.anucene.2004.07.006
- S. Mukhopadhyay, A.P. Tiwari, Consistent output estimate with wavelets: an alternative solution of least squares minimization problem for identification of the LZC system of a large PHWR, Ann. Nuclear Energy 37 (2010) 974-984. https://doi.org/10.1016/j.anucene.2010.03.006
- V. Vajpayee, S. Mukhopadhyay, A.P. Tiwari, Multiscale subspace identification of nuclear reactor using wavelet basis function, Ann. Nuclear Energy 111 (2018) 280-292. https://doi.org/10.1016/j.anucene.2017.09.001
- A. Gabor, C. Fazekas, G. Szederkenyi, K.M. Hangos, Modeling and identification of a nuclear reactor with temperature effects and xenon poisoning, Eur. J. Control 17 (1) (2011) 104-115. https://doi.org/10.3166/ejc.17.104-115
- L. Hong, G. Cheng, C.K. Chui, A filter-bank-based kalman filtering technique for wavelet estimation and decomposition of random signals, IEEE Trans. Circuits Sys. II: Analog Digit. Signal Process. 45 (2) (1998) 237-241. https://doi.org/10.1109/82.661660
- H.M. Nounou, M.N. Nounou, Multiscale fuzzy kalman filtering, Eng. Appl. Artif. Intell. 19 (5) (2006) 439-450. https://doi.org/10.1016/j.engappai.2005.11.001
- E.G. Gilbert, Controllability and observability in multivariable control systems, J. SIAM Control 1 (2) (1963) 128-151.
- B. Friedland, Control Systems Design: an Introduction to State-space Methods, McGraw-Hill Higher Education, 1985.
- L. Ljung, System Identification: Theory for the User, second ed., Prentice Hall, Upper Saddle River, NJ, 1999.