DOI QR코드

DOI QR Code

Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust

톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석

  • Received : 2018.03.30
  • Accepted : 2018.05.08
  • Published : 2018.08.01

Abstract

The objective of this study is to evaluate the economic feasibility of two fast pyrolysis and biooil upgrading (FPBU) plants including feed drying, fast pyrolysis by fluidized-bed, biooil recovery, hydro-processing for biooil upgrading, electricity generation, and wastewater treatment. The two FPBU plants are Case 1 of an FPBU plant with steam methane reforming (SMR) for $H_2$ generation (FPBU-HG, 20% yield), and Case 2 of an FPBU with external $H_2$ supply (FPBUEH, 25% yield). The process flow diagrams (PFDs) for the two plants were constructed, and the mass and energy balances were calculated, using a commercial process simulator (ASPEN Plus). A four-level economic potential approach (4-level EP) was used for techno-economic analysis (TEA) under the assumption of sawdust 100 t//d containing 40% water, 30% equity, capital expenditure equal to the equity, $H_2$ price of $1050/ton, and hydrocarbon yield from dried sawdust equal to 20 and 25 % for Case 1 and 2, respectively. TCI (total capital investment), TPC (total production cost), ASR (annual sales revenue), and MFSP (minimum fuel selling price) of Case 1 were $22.2 million, $3.98 million/yr, $4.64 million/yr, and $1.56/l, respectively. Those of Case 2 were $16.1 million, $5.20 million/yr, $5.55 million/yr, and $1.18/l, respectively. Both ROI (return on investment) and PBP (payback period) of Case 1(FPBU-HG) and Case 2(FPBU-EH) were the almost same. If the plant capacity increases into 1,500 t/d for Case 1 and Case 2, ROI would be improved into 15%/yr.

본 연구의 목표는 톱밥의 건조, 급속열분해, 바이오오일 응축, 바이오오일 수첨개질, 전기생산, 폐수처리를 포함하는 2개의 바이오오일 생산공정들에 대한 경제적 타당성을 평가하는 것이다. 첫번째 공정은 수소생산을 위한 steam-methane reforming (SMR)을 포함하는 바이오오일 생산공정이다(Case 1). 두번째 공정은 SMR을 포함하지 않고 수소를 외부로부터 공급받아 수첨개질을 수행하는 바이오오일 생산공정이다(Case 2). 상용공정모사기인 ASPEN Plus를 이용하여 이두 공정에 대한 공정흐름도를 구축하였고, 물질 및 에너지 수지식을 계산하였다. 원료로서 40%의 수분을 포함하는 톱밥 100 t/d, 30% 자기자본비율, 자기자본에 상응하는 자본지출, 수소 구입가 $1,050/ton, 완전건조된 원료대비 수송용 연료 수율 20% (Case 1) 및 25% (Case 2) 로 가정하고, 4단계 경제성 분석기법인 4-level EP를 사용하여 기술경제성 분석을 수행하였다. 총투자비(TCI), 총생산비(TPC), 연간판매금액(ASR), 그리고 개질 바이오오일의 최소판매가격(MFSP)은 Case 1에 대하여 $22.2 million, $3.98 million/yr, $4.64 million/yr, 그리고 $1.56/l 이고, Case 2에 대하여 $16.1 million, $5.20 million/yr, $5.55 million/yr, $1.18/l로 산출되었다. 수소를 직접 생산하는 Case 1과 수소를 외부로 부터 공급받는 Case 2의 투자회수율(ROI)와 투자회수기간(PBP)은 큰 차이를 보여주지 않았고, Case 1과 Case 2의 원료 공급량을 1,500 t/d로 증가할 경우, ROI는 15% 이상으로 향상될 것으로 예상되었다.

Keywords

References

  1. Shemfe, M. B., Gu, S. and Ranganathan, P., "Techno-Economic Performance Analysis of Biofuel Production and Miniature Electric Power Generation from Biomass Fast Pyrolysis and Bio-Oil Upgrading," Fuel, 143, 361-372(2015). https://doi.org/10.1016/j.fuel.2014.11.078
  2. Abnisa, F., Arami-Niya, A., Wan Daud, W. M. A., Sahu, J. N. and Noor, I. M., "Utilization of Oil Palm Tree Residues to Produce Bio-Oil and Bio-Char Via Pyrolysis," Energy Convers. Manage., 76, 1073-1082(2013). https://doi.org/10.1016/j.enconman.2013.08.038
  3. Do, T. X. and Lim, Y.-I., "Techno-Economic Comparison of Three Energy Conversion Pathways from Empty Fruit Bunches," Renew. Energ., 90, 307-318(2016). https://doi.org/10.1016/j.renene.2016.01.030
  4. Do, T. X., Lim, Y.-I., Jang, S. and Chung, H.-J., "Hierarchical Economic Potential Approach for Techno-Economic Evaluation of Bioethanol Production from Palm Empty Fruit Bunches," Bioresour. Technol., 189, 224-235(2015). https://doi.org/10.1016/j.biortech.2015.04.020
  5. Do, T. X., Lim, Y.-I. and Yeo, H., "Techno-Economic Analysis of Biooil Production Process from Palm Empty Fruit Bunches," Energy Convers. Manage., 80, 525-534(2014). https://doi.org/10.1016/j.enconman.2014.01.024
  6. Do, T. X., Lim, Y.-I., Yeo, H., Lee, U.-D., Choi, Y.-T. and Song, J.-H., "Techno-Economic Analysis of Power Plant Via Circulating Fluidized-Bed Gasification from Woodchips," Energy, 70, 547-560(2014). https://doi.org/10.1016/j.energy.2014.04.048
  7. Wright, M. M., Daugaard, D. E., Satrio, J. A. and Brown, R. C., "Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels," Fuel, 89, Suppl., S2-S10(2010). https://doi.org/10.1016/j.fuel.2010.07.029
  8. Choi, H. S., Choi, Y. S. and Park, H. C., "The Influence of Fast Pyrolysis Condition on Biocrude-Oil Yield and Homogeneity," Korean J. Chem. Eng., 27(4), 1164-1169(2010). https://doi.org/10.1007/s11814-010-0213-8
  9. Dutta, A., Sahir, A., Tan, E., Humbird, D., Snowden-Swan, L. J., et al., "Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemi- cal Research Pathways with in Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors," NREL/TP-5100-62455, U.S. Department of Energy, Oak Ridge(2015).
  10. Park, Y. B., Lim, H. and Woo, H.-C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. Eng. Res., 54(1), 94-100(2016). https://doi.org/10.9713/kcer.2016.54.1.94
  11. Jones, S., Meyer, P., Snowden-Swan, L., Padmaperuma, A., Tan, E., Dutta, A., Jacobson, J. and Cafferty, K., "Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway," NREL/TP-5100-61178, U.S. Department of Energy, Oak Ridge(2013).
  12. Christensen, P. and Dysert, L. R., "Cost Estimate Classification System - as Applied in Engineering, Procurement, and Construction for the Process Industries," AACE International Recommended Practice No. 18R-97(2011).
  13. Do, T. X., Lim, Y.-I., Cho, H., Shim, J., Yoo, J., Rho, K., Choi, S.-G., Park, C. and Park, B.-Y., "Techno-Economic Analysis of Fry-Drying and Torrefaction Plant for Bio-Solid Fuel Production," Renew. Energ., 119, 45-53(2018). https://doi.org/10.1016/j.renene.2017.11.085
  14. Lim, Y.-I., Choi, J., Moon, H. and Kim, K., "Techno-Economic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (Co) Separation from Linze-Donawitz Gas (Ldg)," Korean Chem. Eng. Res., 55(2), 201-213(2016). https://doi.org/10.9713/KCER.2017.55.2.201
  15. Park, Y. C., Lee, T.-Y., Park, J. and Ryu, H.-J., "Performance and Economic Analysis of Natural Gas/Syngas Fueled 100 Mwth Chemical-Looping Combustion Combined Cycle Plant," Korean Chem. Eng. Res., 47(1), 65-71(2009).
  16. Lee, J. H., Kim, J.-H., Lee, I. Y., Jang, K. R. and Shim, J.-G., "Performance and Economic Analysis of 500 $Mw_e$ Coal-Fired Power Plant with Post-Combustion $Co_2$ Capture Process," Korean Chem. Eng. Res., 49(2), 244-249(2011). https://doi.org/10.9713/kcer.2011.49.2.244
  17. Chun, D.-H., Kim, S.-D., Rhim, Y. J. and Lee, S. H., "Economic Analysis of Upgrading Low Rank Coal Process," Korean Chem. Eng. Res., 49(5), 639-643(2011). https://doi.org/10.9713/kcer.2011.49.5.639
  18. Shin, J.-H., Lee, L.-S. and Lee, S.-H., "Economic Assessment of a Indirect Liquefaction Process Using a Gasification with Petroleum Coke/Coal Mixtures," Korean Chem. Eng. Res., 54(4), 501-509(2016). https://doi.org/10.9713/kcer.2016.54.4.501
  19. Byun, J. and Han, J., "Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol," Korean Chem. Eng. Res., 55(5), 609-617(2017). https://doi.org/10.9713/KCER.2017.55.5.609
  20. Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A. and Bhattacharyya, D., Analysis, Synthesis and Design of Chemical Processes, 4th ed., Prentice Hall, New York(2012).
  21. Towler, G. and Sinnott, R., Chemical Engineering Design, 2nd ed., Elsevier, Boston(2008).
  22. Do, T. X., Lim, Y.-I., Lee, J. and Lee, W., "Techno-Economic Analysis of Petrochemical Complex Retrofitted with Simulated Moving-Bed for Olefins and Aromatics Production," Chem. Eng. Res. Des., 106, 222-241(2016). https://doi.org/10.1016/j.cherd.2015.12.020
  23. Upadhye, A. A., Qi, W. and Huber, G. W., "Conceptual Process Design: A Systematic Method to Evaluate and Develop Renewable Energy Technologies," AlChE J., 57(9), 2292-2301(2011). https://doi.org/10.1002/aic.12733
  24. Peters, M. S., Timmerhaus, K. D. and West, R. E., Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill, New York(2003).
  25. Kemp, I. C., Pinch Analysis and Process Integration, 2nd ed., Butterworth-Heinemann, Oxford(2006).
  26. Luyben, W. L., "Heat Exchanger Simulations Involving Phase Changes," Comput. Chem. Eng., 67, 133-136(2014). https://doi.org/10.1016/j.compchemeng.2014.04.002
  27. Humbird, D., Davis, R., Olthof, B., Worley, M. and Sexton, D., "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," NREL/TP-5100-47764, U.S. Department of Energy, Oak Ridge(2011).
  28. Yoo, Y. D., Kim, S. H., Cho, W., Mo, Y. and Song, T., "Basic Economic Analysis for Co-Production Process of Dme and Electricity Using Syngas Obtained by Coal Gasification," Korean Chem. Eng. Res., 52(6), 796-806(2014). https://doi.org/10.9713/kcer.2014.52.6.796
  29. Lozowski, D., Ondrey, G., Jenkins, S. and Bailey, M. P., "Chemical Engineering Plant Cost Index (Cepci)," Chemical Engineering, Access Intelligence LLC, New York(2015).
  30. Perry, R. H. and Green, D. W., Perry's Chemical Engineers' Hand- book: Capter 12. Psychrometry, Evaporative Cooling, and Solids Drying, 7th ed., McGraw-Hill, New York(1999).
  31. Wang, B., Gebreslassie, B. H. and You, F., "Sustainable Design and Synthesis of Hydrocarbon Biorefinery Via Gasification Pathway: Integrated Life Cycle Assessment and Technoeconomic Analysis with Multiobjective Superstructure Optimization," Comput. Chem. Eng., 52, 55-76(2013). https://doi.org/10.1016/j.compchemeng.2012.12.008
  32. Couper, J. R., Process Engineering Economics, 1st ed., Marcel Dekker, New York(2003).
  33. Ruth, M., Laffen, M. and Timbario, T. A., "Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios," NREL/TP-6A1-46612, U.S. Department of Energy, Oak Ridge(2009).

Cited by

  1. 순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석 vol.59, pp.1, 2021, https://doi.org/10.9713/kcer.2021.59.1.60