DOI QR코드

DOI QR Code

다공성 물질을 이용한 CO2 포집 및 분리: 다공성 탄소와 유연한 MOF 비교 연구

CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs

  • 정민지 (국립경남과학기술대학교 에너지공학과) ;
  • 박서하 (국립경남과학기술대학교 에너지공학과) ;
  • 오현철 (국립경남과학기술대학교 에너지공학과) ;
  • 박귀일 (국립경남과학기술대학교 에너지공학과)
  • Jung, Minji (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Seoha (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Kwi-il (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2018.06.08
  • 심사 : 2018.06.25
  • 발행 : 2018.07.27

초록

The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.

키워드

참고문헌

  1. IEA, $CO_{2}$ Emissions from Fuel Combustion 2017, Retrieved May 30, 2018 from https://www.iea.org/publications/ freepublications/publication/CO2EmissionsfromFuel-CombustionHighlights2017.pdf
  2. S. A. Rackley, "Carbon Capture and Storage", ed. S. A. Rackley, p. xi, Butterworth-Heinemann, Boston, USA (2010).
  3. W. S. Ahn, J. Kim and H. Y. Kim, Korean Chem. Eng. Res., 51, 171 (2013). https://doi.org/10.9713/kcer.2013.51.2.171
  4. S. Yan, M. Fang, W. Zhang, W. Zhong, Z. Luo and K. Cen, Energy Convers. Manage., 49, 3188 (2008). https://doi.org/10.1016/j.enconman.2008.05.027
  5. H. J. Lee, J. D. Lee and Y. D. Kim, Korean J. Mater. Res., 18, 650 (2008) https://doi.org/10.3740/MRSK.2008.18.12.650
  6. J. C. Fisher, R. V. Siriwardane and R. W. Stevens, Ind. Eng. Chem. Res., 50, 13962 (2011). https://doi.org/10.1021/ie201666g
  7. J. Park, N. F. Attia, M. Jung, M. E. Lee, K. Lee, J. Chung and H. Oh, Energy, 158, 9 (2018). https://doi.org/10.1016/j.energy.2018.06.010
  8. S. Hug, L. Stegbauer, H. Oh, M. Hirscher and B. V. Lotsch, Chem. Mater., 27, 8001 (2015). https://doi.org/10.1021/acs.chemmater.5b03330
  9. W. R. Lee and C. S. Hong, NICE (News & Information for Chemical Engineers), 31, 466 (2013).
  10. M. Mihaylov, K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn and K. Hadjiivanov, J. Phys. Chem. C, 120, 23584 (2016). https://doi.org/10.1021/acs.jpcc.6b07492
  11. T. S. Blankenship and R. Mokaya, Energy Environ. Sci., 10, 2552 (2017). https://doi.org/10.1039/C7EE02616A