DOI QR코드

DOI QR Code

ON CONFORMAL TRANSFORMATIONS BETWEEN TWO ALMOST REGULAR (α, β)-METRICS

  • Chen, Guangzu (School of Science East China JiaoTong University) ;
  • Liu, Lihong (School of Science East China JiaoTong University)
  • Received : 2017.08.11
  • Accepted : 2018.03.13
  • Published : 2018.07.31

Abstract

In this paper, we characterize the conformal transformations between two almost regular (${\alpha},{\beta}$)-metrics. Suppose that F is a non-Riemannian (${\alpha},{\beta}$)-metric and is conformally related to ${\widetilde{F}}$, that is, ${\widetilde{F}}=e^{{\kappa}(x)}F$, where ${\kappa}:={\kappa}(x)$ is a scalar function on the manifold. We obtain the necessary and sufficient conditions of the conformal transformation between F and ${\widetilde{F}}$ preserving the mean Landsberg curvature. Further, when both F and ${\widetilde{F}}$ are regular, the conformal transformation between F and ${\widetilde{F}}$ preserving the mean Landsberg curvature must be a homothety.

Keywords

References

  1. S. Bacso and X. Cheng, Finsler conformal transformations and the curvature invariances, Publ. Math. Debrecen 70 (2007), no. 1-2, 221-231.
  2. S. Bacso, X. Cheng, and Z. Shen, Curvature properties of (${\alpha}$, ${\beta}$)-metrics, in Finsler geometry, Sapporo 2005-in memory of Makoto Matsumoto, 73-110, Adv. Stud. Pure Math., 48, Math. Soc. Japan, Tokyo, 2007.
  3. G. Chen and X. Cheng, An important class of conformally flat weak Einstein Finsler metrics, Internat. J. Math. 24 (2013), no. 1, 1350003, 15 pp.
  4. G. Chen, X. Cheng, and Y. Zou, On conformal transformations between two (${\alpha}$, ${\beta}$)- metrics, Differential Geom. Appl. 31 (2013), no. 2, 300-307. https://doi.org/10.1016/j.difgeo.2013.01.001
  5. G. Chen, Q. He, and Z. Shen, On conformally flat (${\alpha}$, ${\beta}$)-metrics with constant flag curvature, Publ. Math. Debrecen 86 (2015), no. 3-4, 387-400.
  6. X. Cheng, H. Li, and Y. Zou, On conformally flat (${\alpha}$, ${\beta}$)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen 85 (2014), no. 1-2, 131-144. https://doi.org/10.5486/PMD.2014.5863
  7. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340. https://doi.org/10.1007/s11856-009-0013-1
  8. X. Cheng and Z. Shen, Finsler Geometry, Science Press Beijing, Beijing, 2012.
  9. X. Cheng, H. Wang, and M. Wang, (${\alpha}$, ${\beta}$)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen 72 (2008), no. 3-4, 475-485.
  10. S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
  11. Y. Ichijyo and M. Hashuiguchi, On the condition that a Randers space be conformally flat, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 22 (1989), 7-14.
  12. L. Kang, On conformally flat Randers metrics (in Chinese), Sci. Sin. Math. 41 (2011), no. 5, 439-446. https://doi.org/10.1360/012010-910
  13. S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.) 55 (1994), no. 1, 97-100.
  14. M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. nat. Acad. Sci. USA, 15(1929), 376-379. https://doi.org/10.1073/pnas.15.4.376
  15. B. Li and Z. Shen, On a class of weak Landsberg metrics, Sci. China Ser. A 50 (2007), no. 4, 573-589.
  16. H. Rund, The Differential Geometry of Finsler Spaces, Die Grundlehren der Mathematischen Wissenschaften, Bd. 101, Springer-Verlag, Berlin, 1959.
  17. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.