참고문헌
- F. Bayart and Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
- L. Bernal-Gonzalez, Disjoint hypercyclic operators, Studia Math. 182 (2007), no. 2, 113-131. https://doi.org/10.4064/sm182-2-2
- J. Bes, Dynamics of weighted composition operators, Complex Anal. Oper. Theory 8 (2014), no. 1, 159-176. https://doi.org/10.1007/s11785-012-0281-3
- J. Bes and O. Martin, Compositional disjoint hypercyclicity equals disjoint supercyclicity, Houston J. Math. 38 (2012), no. 4, 1149-1163.
- J. Bes, O. Martin, and A. Peris, Disjoint hypercyclic linear fractional composition operators, J. Math. Anal. Appl. 381 (2011), no. 2, 843-856. https://doi.org/10.1016/j.jmaa.2011.03.072
- J. Bes, O. Martin, A. Peris, and S. Shkarin, Disjoint mixing operators, J. Funct. Anal. 263 (2012), no. 5, 1283-1322. https://doi.org/10.1016/j.jfa.2012.05.018
- J. Bes, O. Martin, and R. Sanders, Weighted shifts and disjoint hypercyclicity, J. Operator Theory 72 (2014), no. 1, 15-40. https://doi.org/10.7900/jot.2012aug20.1970
- J. Bes and A. Peris, Disjointness in hypercyclicity, J. Math. Anal. Appl. 336 (2007), no. 1, 297-315. https://doi.org/10.1016/j.jmaa.2007.02.043
- C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)90078-J
- K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68. https://doi.org/10.4064/sm-139-1-47-68
- K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
- S.-A. Han and Y.-X. Liang, Disjoint hypercyclic weighted translations generated by aperiodic elements, Collect. Math. 67 (2016), no. 3, 347-356. https://doi.org/10.1007/s13348-015-0136-0
- M. Hazarika and S. C. Arora, Hypercyclic operator weighted shifts, Bull. Korean Math. Soc. 41 (2004), no. 4, 589-598. https://doi.org/10.4134/BKMS.2004.41.4.589
- Z. Kamali, K. Hedayatian, and B. Khani Robati, Non-weakly supercyclic weighted composition operators, Abstr. Appl. Anal. (2010), Art. ID 143808, 14 pp.
- Z. Kamali and B. Yousefi, Disjoint hypercyclicity of weighted composition operators, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 4, 559-567. https://doi.org/10.1007/s12044-015-0246-3
- C. Kitai, Invariant Closed Sets for Linear Operators, Ph.D Thesis, University of Toronto, 1982.
- Y.-X. Liang and L. Xia, Disjoint supercyclic weighted translations generated by aperiodic elements, Collect. Math. 68 (2017), no. 2, 265-278. https://doi.org/10.1007/s13348-016-0164-4
- Y.-X. Liang and Z.-H. Zhou, Hereditarily hypercyclicity and supercyclicity of weighted shifts, J. Korean Math. Soc. 51 (2014), no. 2, 363-382. https://doi.org/10.4134/JKMS.2014.51.2.363
- Y.-X. Liang and Z.-H. Zhou, Disjoint supercyclic powers of weighted shifts on weighted sequence spaces, Turkish J. Math. 38 (2014), no. 6, 1007-1022. https://doi.org/10.3906/mat-1308-14
- Y.-X. Liang and Z.-H. Zhou, Hypercyclic behaviour of multiples of composition operators on weighted Banach spaces of holomorphic functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 3, 385-401.
- Y.-X. Liang and Z.-H. Zhou, Disjoint mixing composition operators on the Hardy space in the unit ball, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 289-294. https://doi.org/10.1016/j.crma.2014.01.017
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. https://doi.org/10.4064/sm-32-1-17-22
- H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55-74. https://doi.org/10.4064/sm-135-1-55-74
- R. Sanders, Weakly supercyclic operators, J. Math. Anal. Appl. 292 (2004), no. 1, 148- 159. https://doi.org/10.1016/j.jmaa.2003.11.049
- B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8
- L. Zhang and Z.-H. Zhou, Dynamics of composition operators on weighted Bergman spaces, Indag. Math. (N.S.) 27 (2016), no. 1, 406-418. https://doi.org/10.1016/j.indag.2015.11.012