DOI QR코드

DOI QR Code

DISJOINT SUPERCYCLIC WEIGHTED COMPOSITION OPERATORS

  • Liang, Yu-Xia (School of Mathematical Sciences Tianjin Normal University) ;
  • Zhou, Ze-Hua (School of Mathematics Tianjin University)
  • 투고 : 2017.07.17
  • 심사 : 2018.05.09
  • 발행 : 2018.07.31

초록

In this paper, we discovered a sufficient condition ensuring the weighted composition operators $C_{{\omega}_1,{\varphi}_1},{\cdots},C_{{\omega}_N,{\varphi}_N}$ were disjoint supercyclic on $H({\Omega})$ endowed with the compact open topology. Besides, we provided a condition on inducing symbols to guarantee the disjoint supercyclicity of non-constant adjoint multipliers $M^*_{{\varphi}_1},M^*_{{\varphi}_2},{\cdots},M^*_{{\varphi}_N}$ on a Hilbert space ${\mathcal{H}}$.

키워드

참고문헌

  1. F. Bayart and Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
  2. L. Bernal-Gonzalez, Disjoint hypercyclic operators, Studia Math. 182 (2007), no. 2, 113-131. https://doi.org/10.4064/sm182-2-2
  3. J. Bes, Dynamics of weighted composition operators, Complex Anal. Oper. Theory 8 (2014), no. 1, 159-176. https://doi.org/10.1007/s11785-012-0281-3
  4. J. Bes and O. Martin, Compositional disjoint hypercyclicity equals disjoint supercyclicity, Houston J. Math. 38 (2012), no. 4, 1149-1163.
  5. J. Bes, O. Martin, and A. Peris, Disjoint hypercyclic linear fractional composition operators, J. Math. Anal. Appl. 381 (2011), no. 2, 843-856. https://doi.org/10.1016/j.jmaa.2011.03.072
  6. J. Bes, O. Martin, A. Peris, and S. Shkarin, Disjoint mixing operators, J. Funct. Anal. 263 (2012), no. 5, 1283-1322. https://doi.org/10.1016/j.jfa.2012.05.018
  7. J. Bes, O. Martin, and R. Sanders, Weighted shifts and disjoint hypercyclicity, J. Operator Theory 72 (2014), no. 1, 15-40. https://doi.org/10.7900/jot.2012aug20.1970
  8. J. Bes and A. Peris, Disjointness in hypercyclicity, J. Math. Anal. Appl. 336 (2007), no. 1, 297-315. https://doi.org/10.1016/j.jmaa.2007.02.043
  9. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
  10. G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)90078-J
  11. K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68. https://doi.org/10.4064/sm-139-1-47-68
  12. K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
  13. S.-A. Han and Y.-X. Liang, Disjoint hypercyclic weighted translations generated by aperiodic elements, Collect. Math. 67 (2016), no. 3, 347-356. https://doi.org/10.1007/s13348-015-0136-0
  14. M. Hazarika and S. C. Arora, Hypercyclic operator weighted shifts, Bull. Korean Math. Soc. 41 (2004), no. 4, 589-598. https://doi.org/10.4134/BKMS.2004.41.4.589
  15. Z. Kamali, K. Hedayatian, and B. Khani Robati, Non-weakly supercyclic weighted composition operators, Abstr. Appl. Anal. (2010), Art. ID 143808, 14 pp.
  16. Z. Kamali and B. Yousefi, Disjoint hypercyclicity of weighted composition operators, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 4, 559-567. https://doi.org/10.1007/s12044-015-0246-3
  17. C. Kitai, Invariant Closed Sets for Linear Operators, Ph.D Thesis, University of Toronto, 1982.
  18. Y.-X. Liang and L. Xia, Disjoint supercyclic weighted translations generated by aperiodic elements, Collect. Math. 68 (2017), no. 2, 265-278. https://doi.org/10.1007/s13348-016-0164-4
  19. Y.-X. Liang and Z.-H. Zhou, Hereditarily hypercyclicity and supercyclicity of weighted shifts, J. Korean Math. Soc. 51 (2014), no. 2, 363-382. https://doi.org/10.4134/JKMS.2014.51.2.363
  20. Y.-X. Liang and Z.-H. Zhou, Disjoint supercyclic powers of weighted shifts on weighted sequence spaces, Turkish J. Math. 38 (2014), no. 6, 1007-1022. https://doi.org/10.3906/mat-1308-14
  21. Y.-X. Liang and Z.-H. Zhou, Hypercyclic behaviour of multiples of composition operators on weighted Banach spaces of holomorphic functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 3, 385-401.
  22. Y.-X. Liang and Z.-H. Zhou, Disjoint mixing composition operators on the Hardy space in the unit ball, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 289-294. https://doi.org/10.1016/j.crma.2014.01.017
  23. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. https://doi.org/10.4064/sm-32-1-17-22
  24. H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55-74. https://doi.org/10.4064/sm-135-1-55-74
  25. R. Sanders, Weakly supercyclic operators, J. Math. Anal. Appl. 292 (2004), no. 1, 148- 159. https://doi.org/10.1016/j.jmaa.2003.11.049
  26. B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8
  27. L. Zhang and Z.-H. Zhou, Dynamics of composition operators on weighted Bergman spaces, Indag. Math. (N.S.) 27 (2016), no. 1, 406-418. https://doi.org/10.1016/j.indag.2015.11.012