참고문헌
- Antoni, M., Rossen, J., Martirena, F. and Scrivener, K. (2012), "Cement substitution by a combination of metakaolin and limestone", Cement Concrete Res., 42(12), 1579-1589. https://doi.org/10.1016/j.cemconres.2012.09.006
- Bentz, D.P., Ardani, A., Barrett, T., Jones, S.Z., Lootens, D., Peltz, M.A., Sato, T., Stutzman, P.E., Tanesi, J. and Weiss, W.J. (2015), "Multi-scale investigation of the performance of limestone in concrete", Construct. Build. Mater., 75, 1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
- Bingol, A.F., Tortum, A. and Gul, R. (2013), "Neural networks analysis of compressive strength of lightweight concrete after high temperatures", Mater. Design, 52, 258-264. https://doi.org/10.1016/j.matdes.2013.05.022
- Bouasker, M., Khalifa, N.E.H., Mounanga, P. and Kahla, N.B. (2014), "Early-age deformation and autogenous cracking risk of slag-limestone filler-cement blended binders", Construct. Build. Mater., 55,158-167. https://doi.org/10.1016/j.conbuildmat.2014.01.037
- Boukhatem, B., Ghrici, M., Kenai, S. and Hamou, A.T. (2011), "Prediction of efficiency factor of ground-granulated blast-furnace slag of concrete using artificial neural network", ACI Mater. J., 108(1), 55-63.
- Boukhatem, B., Kenai, S., Ghrici, M. and Hamou, A.T. (2010), "Prevision de l'efficacite des cendres volantes dans le beton par l'utilisation d'un reseau de neurones artificiel", XXVIIIemes Rencontres Universitaires de Genie Civil, La Bourboule, Juin, France.
- Boukhatem, B., Kenai, S., Hamou, A.T., Ziou, D. and Ghrici, M. (2012), "Optimizing a concrete mix design incorporating natural pozzolans using artificial neural networks", Comput. Concrete, 10(6), 557-573. https://doi.org/10.12989/cac.2012.10.6.557
- Cam, H.T. and Neithalath, N. (2010), "Moisture and ionic transport in concretes containing coarse limestone powder", Cement Concrete Composites, 32(7), 486-496. https://doi.org/10.1016/j.cemconcomp.2010.04.002
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Construct. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Douma, O.B., Boukhatem, B., Ghrici, M. and Hamou, A.T. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neural Comput. Appl., 28(1), 707-718. https://doi.org/10.1007/s00521-016-2368-7
- Elyamany, H.E., Elmoaty, A.M.A. and Mohamed, B. (2014), "Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete", Alexandria Eng. J., 53(2), 295-307. https://doi.org/10.1016/j.aej.2014.03.010
- EN 197-1 (2012), Cement. Composition, specifications and conformity criteria for common cements, British Standards Institution; London, United Kingdom.
- Ergun, A. (2011), "Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete", Construct. Build. Mater., 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
- Freeman, J.A. and Skapura, D.M. (1991), Neural networks: Algorithms, Applications and Programming Technique, Addison-Wesley Publishing Company, U.S.A.
- Githachuri, K. and Alexander, M.G. (2013) "Durability performance potential and strength of blended Portland limestone cement concrete", Cement Concrete Composites, 39, 115-121. https://doi.org/10.1016/j.cemconcomp.2013.03.027
- Guemmadi, Z., Resheidat, M., Chabil, H. and Toumi, B. (2009), "Modeling the influence of limestone filler on concrete: a novel approach for strength and cost", Jordan J. Civil Eng., 3(2), 158-171.
- Habert, G. (2013), "A method for allocation according to the economic behavior in the EU-ETS for by-products used in cement industry", J. Life Cycle Assess., 18(1), 113-126. https://doi.org/10.1007/s11367-012-0464-1
- Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, MacMillan, New York, U.S.A.
- Kellouche, Y., Boukhatem, B., Ghrici, M. and Hamou, A.T. (2017), "Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network", Neural Comput. Appl., 2017, 1-20.
- Lollini, F., Redaelli, E. and Bertolini, L. (2014), "Effects of Portland cement replacement with limestone on the properties of hardened concrete", Cement Concrete Composites, 46, 32-40. https://doi.org/10.1016/j.cemconcomp.2013.10.016
- Madandoust, R., Ghavidel, R. and Zadeh, N.N. (2010), "Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV", Comput. Mater. Sci., 49(3), 556-567. https://doi.org/10.1016/j.commatsci.2010.05.050
- Marques, P.F., Chastre, C. and Nunes, A. (2013), "Carbonation service life modeling of RC structures for concrete with Portland and blended cements", Cement Concrete Composites, 37, 171-184. https://doi.org/10.1016/j.cemconcomp.2012.10.007
- Meddah, M.S., Lmbachiya, M.C. and Dhir, R.K. (2014), "Potential use of binary and composite limestone cements in concrete production", Construct. Build. Mater., 58, 193-205. https://doi.org/10.1016/j.conbuildmat.2013.12.012
- Munakata, T. (1998), Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigms, Springer, New York, U.S.A.
- Nakhaei, F., Mosavi, M.R. and Sam, A. (2013), "Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm", J. Mining Sci. Technol., 23(1), 69-77. https://doi.org/10.1016/j.ijmst.2013.01.011
- Neville, A.M. (1996), Properties of Concrete, 4th Ed., Wiley and Sons, New York, U.S.A
- Nuruddin, M.F., Khan, S.U., Shafiq, N. and Ayub, T. (2015), "Strength prediction models for PVA fiber -reinforced high-strength concrete", J. Mater. Civil Eng., 27(12), 2-16.
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoǧlu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Software, 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Ӧztas, A., Pala, M., Ӧzbay, E., Kanca, E., Caǧlar, N. and Bhatti, M.A. (2006), "Application of Artificial Neural Network to Predict Compressive Strength of High Strength Concrete", Construct. Build. Mater., 20, 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Prasad, B.K.R., Eskandari, H. and Reddy, B.V.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Construct. Build. Mater., 23,117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014
- Pratt, I. (1994), Artificial Intelligence, McMillan, New York, U.S.A.
- Ramezanianpour, A.A. (2014), Cement Replacement Materials: Properties, Durability and Sustainability, Springer, Berlin, Germany.
- Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M. and Moodi, F. (2009), "Influence of various amounts of limestone powder on performance of Portland limestone cement concretes", Cement Concrete Composites, 31, 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
- Shahin, M.A., Jaksa, M.B. and Maier, H.R. (2009), "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications", Adv. Artif. Neural Syst., 2009, 1-9.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Software, 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
- Skaropoulou, A., Sotiriadis, K., Kakali, G. and Tsivilis, S. (2013), "Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack", Cement Concrete Composites, 37, 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Construct. Build. Mater., 24, 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Suratgar, A.A., Tavakoli, M.B. and Hoseinabadi, A. (2005), "Modified Levenberg-Marquardt method for neural networks training", J. Comput. Inform. Eng., 1(6), 1745-1747.
- Thongsanitgarn, P., Wongkeo, W., Sinthupinyo, S. and Chaipanich, A. (2011), "Effect of limestone powders on compressive strength and setting time of portland-limestone cement pastes", Proceedings of the TIChE International Conference, Songkhla, Thailand, November.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Tsivilis, S., Tsantilas, J., Kakali, G., Chaniotaki, E. and Sakellariou, A. (2003), "The permeability of Portland limestone cement concrete", Cement Concrete Res., 33(9), 1465-1471. https://doi.org/10.1016/S0008-8846(03)00092-9
- Yeh, I.C. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
피인용 문헌
- Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network vol.1, pp.11, 2019, https://doi.org/10.1007/s42452-019-1504-2
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2018, https://doi.org/10.12989/csm.2019.8.6.523
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
- Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
- Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
- Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR vol.5, pp.2, 2018, https://doi.org/10.12989/acd.2020.5.2.195
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
- Modeling of Compressive Strength of Sustainable Self-Compacting Concrete Incorporating Treated Palm Oil Fuel Ash Using Artificial Neural Network vol.12, pp.22, 2018, https://doi.org/10.3390/su12229322
- Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder vol.10, pp.6, 2018, https://doi.org/10.12989/acc.2020.10.6.463
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2018, https://doi.org/10.12989/acc.2020.10.6.479
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695
- The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks vol.27, pp.1, 2018, https://doi.org/10.12989/cac.2021.27.1.021
- A success history-based adaptive differential evolution optimized support vector regression for estimating plastic viscosity of fresh concrete vol.37, pp.2, 2018, https://doi.org/10.1007/s00366-019-00899-7
- Using LSTM and ARIMA to Simulate and Predict Limestone Price Variations vol.38, pp.2, 2021, https://doi.org/10.1007/s42461-020-00362-y
- Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature vol.14, pp.15, 2018, https://doi.org/10.3390/ma14154222