DOI QR코드

DOI QR Code

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory

  • Behera, Susanta (Department of Mechanical Engineering, Indian Institute of Technology Guwahati) ;
  • Kumari, Poonam (Department of Mechanical Engineering, Indian Institute of Technology Guwahati)
  • 투고 : 2017.12.18
  • 심사 : 2018.01.17
  • 발행 : 2018.07.25

초록

First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning the displacement and stress variables.

키워드

참고문헌

  1. Akavci, S.S. and Tanrikulu, A.H. (2008), "Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories", Mech. Compos. Mater., 44(2), 145-154. https://doi.org/10.1007/s11029-008-9004-2
  2. Caliri Jr., M.F., Ferreira, A.J.M. and Tita, V. (2016), "A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method", Compos. Struct., 156, 63-77. https://doi.org/10.1016/j.compstruct.2016.02.036
  3. Chen, W.C. and Liu, W.H. (1990), "Deflections and free vibrations of laminated plates-Levy type solutions", J. Mech. Sci., 32(9), 779-793. https://doi.org/10.1016/0020-7403(90)90028-H
  4. Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
  5. Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions", Comput. Method. Appl. M., 194(39), 4265-4278. https://doi.org/10.1016/j.cma.2004.11.004
  6. Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", J. Solids Struct., 42(3-4), 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063
  7. Hashemi, S.H., Fadaee, M. and Taher, H.R.D. (2011), "Exact solutions for free flexural vibration of Levy-type rectangular thick plates via third-order shear deformation plate theory", Appl. Math. Modell., 35(2), 708-727. https://doi.org/10.1016/j.apm.2010.07.028
  8. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 51(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00126-4
  9. Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross - ply plates with damping under harmonic electro-mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
  10. Kapuria, S. and Kulkarni, S.D. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", J. Numer. Meth. Eng., 69(9), 1948-1981. https://doi.org/10.1002/nme.1836
  11. Karama, M. (1993), "An evaluation of the edge solution for a higher-order laminated plate theory", Compos. Struct., 25(1-4), 495-502. https://doi.org/10.1016/0263-8223(93)90197-X
  12. Khdeir, A.A. (1988), "Free vibration and buckling of symmetric cross-ply laminated plates by an exact method", J. Sound Vib., 126(3), 447-461. https://doi.org/10.1016/0022-460X(88)90223-4
  13. Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128(3), 377-395. https://doi.org/10.1016/0022-460X(89)90781-5
  14. Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
  15. Kumari, P. and Behera, S. (2017), "Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method", Compos. Part B: Eng., 116, 224-238. https://doi.org/10.1016/j.compositesb.2017.01.057
  16. Kumari, P. and Kapuria, S. (2011), "Boundary layer effects in rectangular cross-ply Levy-type plates using zigzag theory", ZAMM/J. Appl. Math. Mech., 91(7), 565-580. https://doi.org/10.1002/zamm.201000017
  17. Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
  18. Leissa, A.W. and Kang, J.H. (2002), "Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses", J. Mech. Sci., 44(9), 1925-1945. https://doi.org/10.1016/S0020-7403(02)00069-3
  19. Liew, K.M. (1996), "Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method", J. Sound Vib., 198(3), 343-360. https://doi.org/10.1006/jsvi.1996.0574
  20. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic functionally graded sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  21. Mantari, J.L., Oktem, A.S. and Guedes, S.C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  22. Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48(4), 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
  23. Matsunaga, H. (2001), "Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses", J. Mech. Sci., 43(8), 1925-1944. https://doi.org/10.1016/S0020-7403(01)00002-9
  24. Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  25. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18(1), 31-38.
  26. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAAJ., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  27. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-77.
  28. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  29. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053
  30. Swaminathan, K. and Patil, S.S. (2008), "Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of anti-symmetric angle-ply plates", Compos. Struct., 82(2), 209-216. https://doi.org/10.1016/j.compstruct.2007.01.001
  31. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013
  32. Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Modell., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003
  33. Thai, H.T., Nguyen, T.K., Vo, T.P. and Ngo, T. (2017), "A new simple shear deformation plate theory", Compos. Struct., 171, 277-285. https://doi.org/10.1016/j.compstruct.2017.03.027
  34. Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", J. Solids Struct., 41(1), 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007

피인용 문헌

  1. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
  2. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  3. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
  4. Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2018, https://doi.org/10.12989/acc.2020.9.3.301
  5. Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
  6. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
  7. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
  8. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695