References
- Akavci, S.S. and Tanrikulu, A.H. (2008), "Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories", Mech. Compos. Mater., 44(2), 145-154. https://doi.org/10.1007/s11029-008-9004-2
- Caliri Jr., M.F., Ferreira, A.J.M. and Tita, V. (2016), "A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method", Compos. Struct., 156, 63-77. https://doi.org/10.1016/j.compstruct.2016.02.036
- Chen, W.C. and Liu, W.H. (1990), "Deflections and free vibrations of laminated plates-Levy type solutions", J. Mech. Sci., 32(9), 779-793. https://doi.org/10.1016/0020-7403(90)90028-H
- Ferreira, A.J.M., Castro, L.M.S. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions", Comput. Method. Appl. M., 194(39), 4265-4278. https://doi.org/10.1016/j.cma.2004.11.004
- Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", J. Solids Struct., 42(3-4), 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063
- Hashemi, S.H., Fadaee, M. and Taher, H.R.D. (2011), "Exact solutions for free flexural vibration of Levy-type rectangular thick plates via third-order shear deformation plate theory", Appl. Math. Modell., 35(2), 708-727. https://doi.org/10.1016/j.apm.2010.07.028
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 51(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00126-4
- Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross - ply plates with damping under harmonic electro-mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
- Kapuria, S. and Kulkarni, S.D. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", J. Numer. Meth. Eng., 69(9), 1948-1981. https://doi.org/10.1002/nme.1836
- Karama, M. (1993), "An evaluation of the edge solution for a higher-order laminated plate theory", Compos. Struct., 25(1-4), 495-502. https://doi.org/10.1016/0263-8223(93)90197-X
- Khdeir, A.A. (1988), "Free vibration and buckling of symmetric cross-ply laminated plates by an exact method", J. Sound Vib., 126(3), 447-461. https://doi.org/10.1016/0022-460X(88)90223-4
- Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128(3), 377-395. https://doi.org/10.1016/0022-460X(89)90781-5
- Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
- Kumari, P. and Behera, S. (2017), "Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method", Compos. Part B: Eng., 116, 224-238. https://doi.org/10.1016/j.compositesb.2017.01.057
- Kumari, P. and Kapuria, S. (2011), "Boundary layer effects in rectangular cross-ply Levy-type plates using zigzag theory", ZAMM/J. Appl. Math. Mech., 91(7), 565-580. https://doi.org/10.1002/zamm.201000017
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
- Leissa, A.W. and Kang, J.H. (2002), "Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses", J. Mech. Sci., 44(9), 1925-1945. https://doi.org/10.1016/S0020-7403(02)00069-3
- Liew, K.M. (1996), "Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method", J. Sound Vib., 198(3), 343-360. https://doi.org/10.1006/jsvi.1996.0574
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic functionally graded sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mantari, J.L., Oktem, A.S. and Guedes, S.C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
- Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48(4), 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
- Matsunaga, H. (2001), "Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses", J. Mech. Sci., 43(8), 1925-1944. https://doi.org/10.1016/S0020-7403(01)00002-9
- Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18(1), 31-38.
- Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAAJ., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-77.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053
- Swaminathan, K. and Patil, S.S. (2008), "Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of anti-symmetric angle-ply plates", Compos. Struct., 82(2), 209-216. https://doi.org/10.1016/j.compstruct.2007.01.001
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013
- Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Modell., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Ngo, T. (2017), "A new simple shear deformation plate theory", Compos. Struct., 171, 277-285. https://doi.org/10.1016/j.compstruct.2017.03.027
- Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", J. Solids Struct., 41(1), 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
Cited by
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
- Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2018, https://doi.org/10.12989/acc.2020.9.3.301
- Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
- Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695