참고문헌
- Gao, B. et al. Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems. ACS Nano 8, 6998-7004 (2014). https://doi.org/10.1021/nn501824r
- Kim, K., Chen, C. L., Truong, Q., Shen, A. M. & Chen, Y. A Carbon Nanotube Synapse with Dynamic Logic and Learning. Adv. Mater. 25, 1693-1698 (2013). https://doi.org/10.1002/adma.201203116
- Shen, A. M. et al. Analog Neuromorphic Module Based on Carbon Nanotube Synapses. ACS Nano 7, 6117-6122 (2013). https://doi.org/10.1021/nn401946s
- Cho, B. et al. Nonvolatile Analog Memory Transistor Based on Carbon Nanotubes and C60 Molecules. Small 9, 2283-2287 (2013). https://doi.org/10.1002/smll.201202593
- Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The Missing Memristor Found. Nature 453, 80-83 (2008). https://doi.org/10.1038/nature06932
-
Cheng, P., Sun, K. & Hu, Y. H. Memristive Behavior and Ideal Memristor of 1T Phase
$MoS_2$ Nanosheets. Nano Lett. 16, 572-576 (2016). https://doi.org/10.1021/acs.nanolett.5b04260 - Chen, C. L. et al. A Spiking Neuron Circuit Based on a Carbon Nanotube Transistor. Nanotechnology 23, 275202-275207 (2012). https://doi.org/10.1088/0957-4484/23/27/275202
- Yu, F. et al. Chitosan-Based Polysaccharide Gated Flexible Indium-Tin-Oxide Synaptic Transistor with Learning Abilities. ACS Appl. Mater. Interfaces 10, 16881-16886 (2018). https://doi.org/10.1021/acsami.8b03274
- Yang, C. S. et al. A Synaptic Transistor Based on Quasi-2D Molybdenum Oxide. Adv. Mater. 29, 1700906 (2017). https://doi.org/10.1002/adma.201700906
- Zhou, J., Wan, C., Zhu, L., Shi, Y. & Wan, Q. Synaptic Behaviors Mimicked in Flexible Oxide-Based Transistors on Plastic Substrates. IEEE Electron Device Lett. 34, 1433-1435 (2013). https://doi.org/10.1109/LED.2013.2280663
- Wang, J., Li, Y., Yang, Y. & Ren, T. L. Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks. IEEE Electron Device Lett. 38, 588-591 (2017). https://doi.org/10.1109/LED.2017.2690278
- Park, J. et al. Compact Neuromorphic System with Four-Terminal Si-Based Synaptic Devices for Spiking Neural Networks. IEEE Trans. Electron Devices 64, 2438-2444 (2017). https://doi.org/10.1109/TED.2017.2685519
- Ziegler, M. & Kohlstedt, H. Mimic Synaptic Behavior with a Single Floating Gate Transistor: A MemFlash Synapse. J. Appl. Phys. 114, 194506 (2013). https://doi.org/10.1063/1.4832334
- Kim, H. et al. Silicon-Based Floating-Body Synaptic Transistor with Frequency-Dependent Short-and Long-Term Memories. IEEE Electron Device Lett. 37, 249-252 (2016). https://doi.org/10.1109/LED.2016.2521863
- Park, J., Kwon, M.-W., Kim, H. & Park, B.-G. Neuromorphic System Based on CMOS Inverters and Si-Based Synaptic Device. J. Nanosci. Nanotechnol. 16, 4709-4712 (2016). https://doi.org/10.1166/jnn.2016.12234
- Liu, M. et al. Artificial Neuron Synapse Transistor Based on Silicon Nanomembrane on Plastic Substrate. J. Semicond. 38, 064006 (2017). https://doi.org/10.1088/1674-4926/38/6/064006
- Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Adv. Mater. 27, 7176-7180 (2015). https://doi.org/10.1002/adma.201503674
- Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic Core-Sheath Nanowire Artificial Synapses with Femtojoule Energy Consumption. Sci. Adv. 2, 1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- Keene, S. T. et al. Optimized Pulse Write Schemes Improve Linearity and Write Speed for Low-Power Organic Neuromorphic Devices. J. Phys. D: Appl. Phys. 51, 224002 (2018). https://doi.org/10.1088/1361-6463/aabe70
- Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic Plasticity Functions in an Organic Electrochemical Transistor. Appl. Phys. Lett. 107, 263302 (2015). https://doi.org/10.1063/1.4938553
- Di Lauro, M. et al. Liquid-Gated Organic Electronic Devices Based on High-Performance Solution-Processed Molecular Semiconductor. Adv. Electron. Mater. 3, 1700159 (2017). https://doi.org/10.1002/aelm.201700159
- Kong, L.-an et al. Long-Term Synaptic Plasticity Simulated in Ionic Liquid/Polymer Hybrid Electrolyte Gated Organic Transistors. Org. Electron. 47, 126-132 (2017). https://doi.org/10.1016/j.orgel.2017.05.017
- Qian, C. et al. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. ACS Appl. Mater. Interfaces 8, 26169-26175 (2016). https://doi.org/10.1021/acsami.6b08866
- Kim, C. H., Sung, S. & Yoon, M. H. Synaptic Organic Transistors with a Vacuum-Deposited Charge-Trapping Nanosheet. Sci. Rep. 6, 33355 (2016). https://doi.org/10.1038/srep33355
- Zang, Y., Shen, H., Huang, D., Di, C.-A. & Zhu, D. A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality. Adv. Mater. 29, 1606088 (2017). https://doi.org/10.1002/adma.201606088
- Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial Synapse Network on Inorganic Proton Conductor for Neuromorphic Systems. Nat. Commun. 5, 3158 (2014). https://doi.org/10.1038/ncomms4158
- Kaneko, Y., Nishitani, Y. & Ueda, M. Ferroelectric Artificial Synapses for Recognition of a Multishaded Image. IEEE Trans. Electron Devices 61, 2827-2833 (2014). https://doi.org/10.1109/TED.2014.2331707
- Guo, L., Wan, Q., Wan, C., Zhu, L. & Shi, Y. Short-Term Memory to Long-Term Memory Transition Mimicked in IZO Homojunction Synaptic Transistors. IEEE Electron Device Lett. 34, 1581-1583 (2013). https://doi.org/10.1109/LED.2013.2286074
-
Guo, Z., Guo, L., Zhu, L. & Zhu, Y. Short-Term Synaptic Plasticity Mimicked on Ionic/Electronic Hybrid Oxide Synaptic Transistor Gated by Nanogranular
$SiO_2$ Films. J. Mater. Sci. Technol. 30, 1141-1144 (2014). https://doi.org/10.1016/j.jmst.2014.04.015 - Wu, G., Wan, C., Zhou, J., Zhu, L. & Wan, Q. Low-Voltage Protonic/Electronic Hybrid Indium Zinc Oxide Synaptic Transistors on Paper Substrates. Nanotechnology 25, 094001 (2014). https://doi.org/10.1088/0957-4484/25/9/094001
- Wu, G., Zhang, J., Wan, X., Yang, Y. & Jiang, S. Chitosan-Based Biopolysaccharide Proton Conductors for Synaptic Transistors on Paper Substrates. J. Mater. Chem. C 2, 6249-6255 (2014).
- Zhou, J., Liu, Y., Shi, Y. & Wan, Q. Solution-Processed Chitosan-Gated IZO-Based Transistors for Mimicking Synaptic Plasticity. IEEE Electron Device Lett. 35, 280-282 (2014). https://doi.org/10.1109/LED.2013.2295815
- Liu, R. et al. Biodegradable Oxide Synaptic Transistors Gated by a Biopolymer Electrolyte. J. Mater. Chem. C 4, 7744-7750 (2016). https://doi.org/10.1039/C6TC02693A
- Liu, Y. H., Zhu, L. Q., Feng, P., Shi, Y. & Wan, Q. Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes. Adv. Mater. 27, 5599-5604 (2015). https://doi.org/10.1002/adma.201502719
- Lu, A., Sun, J., Jiang, J. & Wan, Q. One-Shadow-Mask Self-Assembled Ultralow-Voltage Coplanar Homojunction Thin-Film Transistors. IEEE Electron Device Lett. 31, 1137-1139 (2010). https://doi.org/10.1109/LED.2010.2061834
-
Wan, C. J., Zhu, L. Q., Zhou, J. M., Shi, Y. & Wan, Q. Memory and Learning Behaviors Mimicked in Nanogranular
$SiO_2$ -Based Proton Conductor Gated Oxide-Based Synaptic Transistors. Nanoscale 5, 10194 (2013). https://doi.org/10.1039/c3nr02987e - Zhu, L. Q. et al. Multi-Gate Synergic Modulation in Laterally Coupled Synaptic Transistors. Appl. Phys. Lett. 107, 143502 (2015). https://doi.org/10.1063/1.4932568
- Zhu, L. Q. et al. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane. ACS Appl. Mater. Interfaces 8, 21770-21775 (2016). https://doi.org/10.1021/acsami.6b05167
- Kong, L.-an et al. Ion-Gel Gated Field-Effect Transistors with Solution-Processed Oxide Semiconductors for Bioinspired Artificial Synapses. Org. Electron. 39, 64-70 (2016). https://doi.org/10.1016/j.orgel.2016.09.029
- Guo, L., Wen, J., Cheng, G., Yuan, N. & Ding, J. Synaptic Behaviors Mimicked in Indium-Zinc-Oxide Transistors Gated by High-Proton-Conducting Graphene Oxide-Based Composite Solid Electrolytes. J. Mater. Chem. C 4, 9762-9770 (2016). https://doi.org/10.1039/C6TC02228F
- Wu, G. et al. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016). https://doi.org/10.1038/srep23578
- Wan, C. J., Zhu, L. Q., Wan, X., Shi, Y. & Wan, Q. Organic/Inorganic Hybrid Synaptic Transistors Gated by Proton Conducting Methylcellulose Films. Appl. Phys. Lett. 108, 043508 (2016). https://doi.org/10.1063/1.4941080
- Wang, J. et al. Synaptic Computation Demonstrated in a Two-Synapse Network Based on Top-Gate Electric-Double-Layer Synaptic Transistors. IEEE Electron Device Lett. 38, 1496-1499 (2017). https://doi.org/10.1109/LED.2017.2745482
- Guo, L. Q., Zhu, L. Q., Ding, J. N. & Huang, Y. K. Paired-Pulse Facilitation Achieved in Protonic/Electronic Hybrid Indium Gallium Zinc Oxide Synaptic Transistors. AIP Adv. 5, 087112 (2015). https://doi.org/10.1063/1.4928386
- Zhou, J., Liu, N., Zhu, L., Shi, Y. & Wan, Q. Energy-Efficient Artificial Synapses Based on Flexible IGZO Electric-Double-Layer Transistors. IEEE Electron Device Lett. 36, 198-200 (2015). https://doi.org/10.1109/LED.2014.2381631
- Wan, X., Feng, P., Wu, G. D., Shi, Y. & Wan, Q. Simulation of Laterally Coupled InGaZnO4-Based Electric-Double-Layer Transistors for Synaptic Electronics. IEEE Electron Device Lett. 36, 204-206 (2015). https://doi.org/10.1109/LED.2015.2388952
- Shao, F., Yang, Y., Zhu, L. Q., Feng, P. & Wan, Q. Oxide-Based Synaptic Transistors Gated by Sol-Gel Silica Electrolytes. ACS Appl. Mater. Interfaces 8, 3050-3055 (2016). https://doi.org/10.1021/acsami.5b10195
-
Kim, Y.-M., Kim, E.-J., Lee, W.-H., Oh, J.-Y. & Yoon, S.-M. Short-Term and Long-Term Memory Operations of Synapse Thin-Film Transistors Using an In-Ga-Zn-O Active Channel and a Poly(4-Vinylphenol)-Sodium
${\beta}$ -Alumina Electrolytic Gate Insulator. RSC Adv. 6, 52913-52919 (2016). https://doi.org/10.1039/C6RA09503H - Wan, C. J. et al. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors. ACS Appl. Mater. Interfaces 8, 9762-9768 (2016). https://doi.org/10.1021/acsami.5b12726
-
Li, H. K. et al. A Light-Stimulated Synaptic Transistor with Synaptic Plasticity and Memory Functions Based on
$InGaZnO_x-Al_2O_3$ Thin Film Structure. J. Appl. Phys. 119, 244505 (2016). https://doi.org/10.1063/1.4955042 - Dai, M. et al. Realization of Tunable Artificial Synapse and Memory Based on Amorphous Oxide Semiconductor Transistor. Sci. Rep. 7, 10997 (2017). https://doi.org/10.1038/s41598-017-04641-5
- Yang, Y., He, Y., Nie, S., Shi, Y. & Wan, Q. Light Stimulated IGZO-Based Electric-Double-Layer Transistors for Photoelectric Neuromorphic Devices. IEEE Electron Device Lett. 39, 897-900 (2018). https://doi.org/10.1109/LED.2018.2824339
- Wang, J. et al. Long-Term Depression Mimicked in an IGZO-Based Synaptic Transistor. IEEE Electron Device Lett. 38, 191-194 (2017). https://doi.org/10.1109/LED.2016.2639539
- Yang, P. et al. Synaptic Transistor with a Reversible and Analog Conductance Modulation Using a Pt/HfOx/n-IGZO Memcapacitor. Nanotechnology 28, 225201 (2017). https://doi.org/10.1088/1361-6528/aa6dac
- Pillai, P. B. & De Souza, M. M. Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Appl. Mater. Interfaces 9, 1609-1618 (2017). https://doi.org/10.1021/acsami.6b13746
- Wen, J. et al. Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor. ACS Appl. Mater. Interfaces 9, 37064-37069 (2017). https://doi.org/10.1021/acsami.7b13215
- Balakrishna Pillai, P., Kumar, A., Song, X. & De Souza, M. M. Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 10, 9782-9791 (2018). https://doi.org/10.1021/acsami.7b14768
- John, R. A. et al. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. Small 13, 1701193 (2017). https://doi.org/10.1002/smll.201701193
- Fu, Y. M., Zhu, L. Q., Wen, J., Xiao, H. & Liu, R. Mixed Protonic and Electronic Conductors Hybrid Oxide Synaptic Transistors. J. Appl. Phys. 121, 205301 (2017). https://doi.org/10.1063/1.4983847
-
Gou, G. et al. Artificial Synapses Based on Biopolymer Electrolyte-Coupled
$SnO_2$ Nanowire Transistors. J. Mater. Chem. C 4, 11110-11117 (2016). - Zou, C. et al. Polymer-Electrolyte-Gated Nanowire Synaptic Transistors for Neuromorphic Applications. Appl. Phys. A Mater. Sci. Process. 123, 597 (2017). https://doi.org/10.1007/s00339-017-1218-5
- Fuller, E. J. et al. Li-Ion Synaptic Transistor for Low Power Analog Computing. Adv. Mater. 29, 1604310 (2017). https://doi.org/10.1002/adma.201604310
- Guo, L. Q., Wen, J., Zhu, L. Q., Fu, Y. M. & Xiao, H. Humidity-Dependent Synaptic Plasticity for Proton Gated Oxide Synaptic Transistor. IEEE Electron Device Lett. 38, 1248-1251 (2017). https://doi.org/10.1109/LED.2017.2723917
- Wan, C. J. et al. Proton-Conducting Graphene Oxide-Coupled Neuron Transistors for Brain-Inspired Cognitive Systems. Adv. Mater. 28, 3557-3563 (2016). https://doi.org/10.1002/adma.201505898
- Feng, P., Du, P., Wan, C., Shi, Y. & Wan, Q. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices. Sci. Rep. 6, 34065 (2016). https://doi.org/10.1038/srep34065
- Wan, C. et al. Indium-Zinc-Oxide Neuron Thin Film Transistors Laterally Coupled by Sodium Alginate Electrolytes. IEEE Trans. Electron Devices 63, 3958-3963 (2016). https://doi.org/10.1109/TED.2016.2601925
- Wan, C., Zhu, L., Liu, Y., Shi, Y. & Wan, Q. Laterally Coupled Synaptic Transistors Gated by Proton Conducting Sodium Alginate Films. IEEE Electron Device Lett. 35, 672-674 (2014). https://doi.org/10.1109/LED.2014.2316545
- Kim, S., Yoon, J., Kim, H.-D. & Choi, S.-J. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition. ACS Appl. Mater. Interfaces 7, 25479-25486 (2015). https://doi.org/10.1021/acsami.5b08541
- Kim, S. et al. Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol. ACS Nano 11, 2814-2822 (2017). https://doi.org/10.1021/acsnano.6b07894
- Qin, S. et al. A Light-Stimulated Synaptic Device Based on Graphene Hybrid Phototransistor. 2D Mater. 4, 035022 (2016).
- Shen, A. M., Kim, K., Tudor, A., Lee, D. & Chen, Y. Doping Modulated Carbon Nanotube Synapstors for a Spike Neuromorphic Module. Small 11, 1571-1579 (2015). https://doi.org/10.1002/smll.201402528
- Kim, Y. & Cho, B. Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI : PCBM Dielectric Layers. Krean J. Mater. Res. 27, 590-596 (2017). https://doi.org/10.3740/MRSK.2017.27.11.590
- Sangwan, V. K. et al. Multi-Terminal Memtransistors from Polycrystalline Monolayer Molybdenum Disulfide. Nature 554, 500-504 (2018). https://doi.org/10.1038/nature25747
-
Arnold, A. J. et al. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in
$MoS_2$ Transistors. ACS Nano 11, 3110-3118 (2017). https://doi.org/10.1021/acsnano.7b00113 -
Jiang, J. et al. 2D
$MoS_2$ Neuromorphic Devices for Brain-Like Computational Systems. Small 13, 1700933 (2017). https://doi.org/10.1002/smll.201700933 - Zhu, J. et al. Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics. Adv. Mater. 30, 1800195 (2018). https://doi.org/10.1002/adma.201800195
- Tian, H. et al. Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications. Adv. Mater. 28, 4991-4997 (2016). https://doi.org/10.1002/adma.201600166
- Tian, H. et al. Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. ACS Nano 11, 7156-7163 (2017). https://doi.org/10.1021/acsnano.7b03033