Dual Energy CT에서 Monoenergetic 영상을 이용한 금속성 인공음영(Metal Artifact) 감소기법에 대한 연구

Dose Comparison according to the Tube Voltage, the Tube Current Change in CT Image

  • 문일봉 (광주보건대학교 방사선과) ;
  • 동경래 (광주보건대학교 방사선과) ;
  • 최성관 (광주보건대학교 방사선과) ;
  • 곽종길 (동신대학교 보건의료학과) ;
  • 김호성 (신한대학교 방사선학과) ;
  • 정운관 (조선대학교 원자력공학과)
  • Moon, Il-Bong (Department of Radiological Technology, Gwangju Health University) ;
  • Dong, Kyung-Rae (Department of Radiological Technology, Gwangju Health University) ;
  • Choi, Seong-Kwan (Department of Radiological Technology, Gwangju Health University) ;
  • Kwak, Jong-Gil (Department of Public Health and Medicine, Dongshin University Graduate School) ;
  • Kim, Ho-Sung (Department of Radiological Science, Shinhan University) ;
  • Chung, Woon-Kwan (Department of Nuclear Engineering, Chosun University)
  • 투고 : 2018.03.17
  • 심사 : 2018.06.15
  • 발행 : 2018.06.30

초록

It is to find optimize quantity of ray that can decrease metal artifact caused by artificial hip joint, etc. when deciphering an image by monochromatic X-ray. To compare change of CT number value and noise value of metal artifact in animal tested image, 4 areas were selected and changed keV to measure CT number and noise value at each keV then CNR (Contrast to Noise Ratio) value is calculated. From computer analysis result, 62keV is the point where can get the metal artifact minimized image, but this paper figured out that it is possible to get the metal artifact minimized image from 90 keV. Therefore, it is possible to get diagnosable image that minimized metal artifact by reconstruction in condition of 90 keV when having CT scan for patients who had artificial metal substance enthesis such as pedicle screw enthesis and artificial coxaenthesis.

키워드

과제정보

연구 과제 주관 기관 : Chosun University

참고문헌

  1. Alvarez RE and Macovski A. 1976. Energy-selective reconstructions in x-ray computed tomography. Phys. Med. Biol. 21(5):733-744. https://doi.org/10.1088/0031-9155/21/5/002
  2. Chuang KS and Huang HK. 1987. A fast dual-energy computational method using isotransmission lines and table lookup. Med. Phys. 14(2):186-192. https://doi.org/10.1118/1.596110
  3. Dilmanian FA, Wu XY, Kress J, Ren B, Chapman D, Coderre JA, Greenberg D, Parsons E and Shleifer M. 1995. Dual energy iodine contrast CT with monochromatic X-rays. In: Conference Record of the 1994 IEEE Nuclear Science Symposium and Medical Imaging Conference. IEEE 3:1392-1396.
  4. Dilmanian FA, Wu XY, Parsons EC, Ren B, Kress J. Button TM, Chapman LD, Coderre JA, Giron F and Greenberg D. 1997. Single and dual-energy CT with monochromatic synchrotron x-rays. Phys. Med. Biol. 42(2):371-387. https://doi.org/10.1088/0031-9155/42/2/009
  5. Heismann BJ, Leppert J and Stierstorfer K. 2003. Density and atomic number measurements with spectral x-ray attenuation method. J. Appl. Phys. 94:2073-2079. https://doi.org/10.1063/1.1586963
  6. Kalender WA, Perman WH, Vetter JR and Klotz E. 1986. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med. Phys. 13(3):334-339. https://doi.org/10.1118/1.595958
  7. Kelcz F, Joseph PM and Hilal SK. 1979. Noise considerations in dual energy CT scanning. Med. Phys. 6(5):418-425. https://doi.org/10.1118/1.594520
  8. Robertson DD, Tuan J, Wang G and Vannier MW. 1997. Total hip prosthesis metal artifact suppression using iterative deblurring reconstruction. J. Comput. Assist. Tomogr. 21(2):293-298. https://doi.org/10.1097/00004728-199703000-00024
  9. Sakamoto K, Suzuki Y, Hirano T and Usami K. 1988. Improvement of spatial resolution of monochromatic X-ray CT using synchrotron radiation. Jpn. J. Appl. Phys. 27(1):127-132. https://doi.org/10.1143/JJAP.27.127
  10. Toyofuku F, Tokumori K, Nishimura K, Saito T, Takeda T and Ltai Y. 1995. Development of fluorescent X-ray source for medical imaging. Rev. Sci. Instrum. 66(2):1981-1983. https://doi.org/10.1063/1.1145776
  11. Wang G, Frei T and Vannier MW. 2000. Fast iterative algorithm for metal artifact reduction in X-ray CT. Acad. Radiol. 7(8):607-614. https://doi.org/10.1016/S1076-6332(00)80576-0
  12. Yeom JS, Chung MS, Lee CK, Chang BS, Kim YH, Kim NK and Lee JB. 2003. Computer-assisted Evaluation of Pedicle Screw Position on CT Images. J. Korean Orthop. Assoc. 38(2):165-171. https://doi.org/10.4055/jkoa.2003.38.2.165
  13. Yoo JU, Ghanayem A, Petersilge C and Lewin J. 1997. Accuracy of using computed tomography to identify pedicle screw placement in cadaveric human lumbar spine. Spine 22(22):2668-2671. https://doi.org/10.1097/00007632-199711150-00016
  14. Zhao S, Robertson DD, Wang G, Whiting B and Bae KT. 2000. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE Trans. Med. Imaging. 19:1238-1247. https://doi.org/10.1109/42.897816