DOI QR코드

DOI QR Code

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha (Cain Department of Chemical Engineering, Louisiana State University) ;
  • Vaitilingom, Mickael (Cain Department of Chemical Engineering, Louisiana State University) ;
  • Zhang, Zenghui (Cain Department of Chemical Engineering, Louisiana State University) ;
  • Liyana-Arachchi, Thilanga P. (Cain Department of Chemical Engineering, Louisiana State University) ;
  • Stevens, Christopher S. (Cain Department of Chemical Engineering, Louisiana State University) ;
  • Hung, Francisco R. (Department of Chemical Engineering, Northeastern University) ;
  • Valsaraj, Kalliat T. (Cain Department of Chemical Engineering, Louisiana State University)
  • 투고 : 2018.05.03
  • 심사 : 2018.07.12
  • 발행 : 2018.06.25

초록

Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation

참고문헌

  1. Altschuh, J., Bruggemann, R., Santl, H., Eichinger, G. and Piringer, O.G. (1999), "Henry's law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods", Chemosphere, 39(11), 1871-1887. https://doi.org/10.1016/S0045-6535(99)00082-X
  2. Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D. and Morrison, C.L. (1991), "The emission of (z)-3-hexen-1-ol, (z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species", Atmos. Environ. Part A, 25(5-6), 1063-1075. https://doi.org/10.1016/0960-1686(91)90148-Z
  3. Ashworth, R.A., Howe, G.B., Mullins, M.E. and Rogers, T.N. (1988), "Air-water partitioning coefficients of organics in dilute aqueous solutions", J. Hazard. Mater., 18(1), 25-36. https://doi.org/10.1016/0304-3894(88)85057-X
  4. Baev, A.K. (2012), Specific Intermolecular Interactions of Organic Compounds, Springer.
  5. Bamford, H.A., Poster, D.L. and Baker, J.E. (1999), "Method for measuring the temperature dependence of the Henry's law constant of selected polycyclic aromatic hydrocarbons", Polycyclic Aromat. Compd., 14(1-4), 11-22. https://doi.org/10.1080/10406639908019107
  6. Banerjee, S., Yalkowsky, S.H. and Valvani, C. (1980), "Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation", Environ. Sci. Technol., 14(10), 1227-1229. https://doi.org/10.1021/es60170a013
  7. Bateman, A.P., Nizkorodov, S.A., Laskin, J. and Laskin, A. (2011), "Photolytic processing of secondary organic aerosols dissolved in cloud droplets", Phys. Chem. Chem. Phys., 13(26), 12199-12212. https://doi.org/10.1039/c1cp20526a
  8. Bennett, C.H. (1976), "Efficient estimation of free energy differences from Monte Carlo data", J. Comput. Phys., 22(2), 245-268. https://doi.org/10.1016/0021-9991(76)90078-4
  9. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987), "The missing term in effective pair potentials", J. Phys. Chem., 91(24), 6269-6271. https://doi.org/10.1021/j100308a038
  10. Blando, J.D. and Turpin, B.J. (2000), "Secondary organic aerosol formation in cloud and fog droplets: A literature evaluation of plausibility", Atmos. Environ., 34(10), 1623-1632. https://doi.org/10.1016/S1352-2310(99)00392-1
  11. Chickos, J.S. and Acree Jr, W.E. (2003), "Enthalpies of vaporization of organic and organometallic compounds, 1880-2002", J. Phys. Chem. Ref. Data, 32(2), 519-878. https://doi.org/10.1063/1.1529214
  12. Chiou, C.T., Freed, V.H., Schmedding, D.W. and Kohnert, R.L. (1977), "Partition coefficient and bioaccumulation of selected organic chemicals", Environ. Sci. Technol., 11(5), 475-478. https://doi.org/10.1021/es60128a001
  13. Chiou, C.T., Schmedding, D.W. and Manes, M. (1982), "Partitioning of organic compounds in octanolwater systems", Environ. Sci. Technol., 16(1), 4-10.
  14. Dewulf, J., Drijvers, D. and Van Langenhove, H. (1995), "Measurement of Henry's law constant as function of temperature and salinity for the low temperature range", Atmos. Environ., 29(3), 323-331. https://doi.org/10.1016/1352-2310(94)00256-K
  15. Donaldson, D.J. and Valsaraj, K.T. (2010), "Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review", Environ. Sci. Technol., 44(3), 865-873. https://doi.org/10.1021/es902720s
  16. Falabella, J.B., Nair, A. and Teja, A.S. (2006), "Henry's constants of 1-alkanols and 2-ketones in salt solutions", J. Chem. Eng. Data, 51(5), 1940-1945. https://doi.org/10.1021/je0600956
  17. Fall, R., Karl, T., Hansel, A., Jordan, A. and Lindinger, W. (1999), "Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry", J. Geophys. Res. Atmos., 104(D13), 15963-15974. https://doi.org/10.1029/1999JD900144
  18. Gelencser, A. (2005), Carbonaceous Aerosol, Springer, Dordrecht, The Netherlands.
  19. Gluge, J., Bogdal, C., Scheringer, M., Buser, A.M. and Hungerbuhler, K. (2013), "Calculation of physicochemical properties for short-and medium-chain chlorinated paraffins", J. Phys. Chem. Ref. Data, 42(2), 023103-023112. https://doi.org/10.1063/1.4802693
  20. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J. and Zimmerman, P. (1995), "A global model of natural volatile organic compound emissions", J. Geophys. Res. Atmos., 100(D5), 8873-8892. https://doi.org/10.1029/94JD02950
  21. Hamilton, J.F., Lewis, A.C., Carey, T.J., Wenger, J.C., Borras i Garcia, E. and Munoz, A. (2009), "Reactive oxidation products promote secondary volatile organic aerosol formation from green leaf volatiles", Atmos. Chem. Phys., 9(11), 3815-3823. https://doi.org/10.5194/acp-9-3815-2009
  22. Hansel, A.K., Ehrenhauser, F.S., Richards-Henderson, N.K., Anastasio, C. and Valsaraj, K.T. (2015), "Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation", Atmos. Environ., 102, 43-51. https://doi.org/10.1016/j.atmosenv.2014.11.055
  23. Harley, P., Fridd-Stroud, V., Greenberg, J., Guenther, A. and Vasconcellos, P. (1998), "Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere", J. Geophys. Res. Atmos., 103(D19), 25479-25486. https://doi.org/10.1029/98JD00820
  24. Hartkopf, A. and Karger, B.L. (1973), "Study of interfacial properties of water by gas-chromatography", Account. Chem. Res., 6(6), 209-216. https://doi.org/10.1021/ar50066a006
  25. Harvey, R.M., Zahardis, J. and Petrucci, G.A. (2014), "Establishing the contribution of lawn mowing to atmospheric aerosol levels in american suburbs", Atmos. Chem. Phys., 14(2), 797-812. https://doi.org/10.5194/acp-14-797-2014
  26. Heiden, A.C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D., Langebartels, C., Mehlhorn, H., Sandermann Jr., H., Schraudner, M., Schuh, G. and Wildt, J. (1999), "Emission of volatile organic compounds from ozone-exposed plants", Ecol. Appl., 9(4), 1160-1167. https://doi.org/10.1890/1051-0761(1999)009[1160:EOVOCF]2.0.CO;2
  27. Herckes, P., Valsaraj, K.T. and Collett Jr, J.L. (2013), "A review of observations of organic matter in fogs and clouds: Origin, processing and fate", Atmos. Res., 132, 434-449.
  28. Hess, B., Kutzner, C., Van Der Spoel, D. and Lindahl, E. (2008), "Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation", J. Chem. Theor. Comput., 4(3), 435-447. https://doi.org/10.1021/ct700301q
  29. Hilal, S.H., Karickhoff, S.W. and Carreira, L.A. (2003), "Prediction of the vapor pressure, boiling point, heat of vaporization and diffusion coefficient of organic compounds", QSAR Comb. Sci., 22(6), 565-574. https://doi.org/10.1002/qsar.200330812
  30. Hine, J. and Mookerjee, P.K. (1975), "Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contribution", J. Org. Chem., 40(3), 292-298. https://doi.org/10.1021/jo00891a006
  31. Holopainen, J.K. (2004), "Multiple functions of inducible plant volatiles", Trends Plant Sci., 9(11), 529-533. https://doi.org/10.1016/j.tplants.2004.09.006
  32. Hoyle, C.R., Boy, M., Donahue, N.M., Fry, J.L., Glasius, M., Guenther, A., Hallar, A.G., Huff Hartz, K., Petters, M.D., Petaja, T., Rosenoern, T. and Sullivan, A.P. (2011), "A review of the anthropogenic influence on biogenic secondary organic aerosol", Atmos. Chem. Phys., 11(1), 321-343. https://doi.org/10.5194/acp-11-321-2011
  33. Hub, J.S., Caleman, C. and van der Spoel, D. (2012), "Organic molecules on the surface of water droplets-an energetic perspective", Phys. Chem. Chem. Phys., 14(27), 9537-9545. https://doi.org/10.1039/c2cp40483d
  34. Ip, H.S., Huang, X.H. and Yu, J.Z. (2009), "Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid", Geophys. Res. Lett., 36(1).
  35. Isnard, P. and Lambert, S. (1989), "Aqueous solubility and n-octanol/water partition coefficient correlations", Chemosphere, 18, 1837-1853.
  36. Jardine, K., Abrell, L., Kurc, S.A., Huxman, T., Ortega, J. and Guenther, A. (2010), "Volatile organic compound emissions from larrea tridentata (creosotebush)", Atmos. Chem. Phys., 10(24), 12191-12206. https://doi.org/10.5194/acp-10-12191-2010
  37. Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J. (1996), "Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids", J. Am. Chem. Soc., 118(45), 11225-11236. https://doi.org/10.1021/ja9621760
  38. Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G. and Wilson, J. (2005), "Organic aerosol and global climate modelling: A review", Atmos. Chem. Phys., 5(4), 1053-1123. https://doi.org/10.5194/acp-5-1053-2005
  39. Karl, T., Guenther, A., Turnipseed, A., Patton, E.G. and Jardine, K. (2008), "Chemical sensing of plant stress at the ecosystem scale", Biogeosci., 5(3), 2381-2399. https://doi.org/10.5194/bgd-5-2381-2008
  40. Karl, T., Yeretzian, C., Jordan, A. and Lindinger, W. (2003), "Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (ptr-ms)", J. Mass Spectromet., 223, 383-395.
  41. Kim, S., Karl, T., Guenther, A., Tyndall, G., Orlando, J., Harley, P., Rasmussen, R. and Apel, E. (2010), "Emissions and ambient distributions of biogenic volatile organic compounds (bvoc) in a ponderosa pine ecosystem: Interpretation of ptr-ms mass spectra", Atmos. Chem. Phys., 10(4), 1759-1771. https://doi.org/10.5194/acp-10-1759-2010
  42. Liyana-Arachchi, T.P., Hansel, A.K., Stevens, C., Ehrenhauser, F.S., Valsaraj, K.T. and Hung, F.R. (2013a), "Molecular modeling of the green leaf volatile methyl salicylate on atmospheric air/water interfaces", J. Phys. Chem. A, 117(21), 4436-4443. https://doi.org/10.1021/jp4029694
  43. Liyana-Arachchi, T.P., Stevens, C., Hansel, A.K., Ehrenhauser, F.S., Valsaraj, K.T. and Hung, F.R. (2013b), "Molecular simulations of green leaf volatiles and atmospheric oxidants on air/water interfaces", Phys. Chem. Chem. Phys., 15(10), 3583-3592. https://doi.org/10.1039/c3cp44090g
  44. Liyana-Arachchi, T.P., Zhang, Z., Vempati, H., Hansel, A.K., Stevens, C., Pham, A.T., Franz, S., Ehrenhauser, F.S. and Valsaraj, K.T. and Hung, F.R. (2014), "Green leaf volatiles on atmospheric air/water interfaces: A combined experimental and molecular simulation study", J. Chem. Eng. Data, 59(10), 3025-3035. https://doi.org/10.1021/je500114m
  45. Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H. (1990), Handbook of Chemical Property Estimation Methods.
  46. Mackay, D. (2001), Multimedia Environmental Models: The Fugacity Approach, CRC Press, New York, U.S.A.
  47. Mackay, D., Shiu, W.Y. and Sutherland, R.P. (1979), "Determination of air-water Henry's law constants for hydrophobic pollutants", Environ. Sci. Technol., 13(3), 333-337. https://doi.org/10.1021/es60151a012
  48. Marrero, J. and Gani, R. (2002), "Group-contribution-based estimation of octanol/water partition coefficient and aqueous solubility", Ind. Eng. Chem. Res., 41(25), 6623-6633. https://doi.org/10.1021/ie0205290
  49. Matsui, K. (2006), "Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism", Curr. Opin. Plant Biol., 9(3), 274-280. https://doi.org/10.1016/j.pbi.2006.03.002
  50. McDonald, B.C., de Gouw, J.A., Gilman, J.B., Jathar, S.H., Akherati, A., Cappa, C.D., Jimenez, J.L., Taylor, J.L. and Cui, Y.Y. (2018), "Volatile chemical products emerging as largest petrochemical source of urban organic emissions", Science, 359(6377), 760-764. https://doi.org/10.1126/science.aaq0524
  51. Mentel, T.F., Kleist, E., Andres, S., Maso, M.D., Hohaus, T., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R., Uerlings, R., Wahner, A. and Wildt, J. (2013), "Secondary aerosol formation from stressinduced biogenic emissions and possible climate feedbacks", Atmos. Chem. Phys., 13(17), 8755-8770. https://doi.org/10.5194/acp-13-8755-2013
  52. Mentel, T.F., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Maso, M.D., Fisseha1, R., Hohaus, T. Spahn, H., Uerlings, R., Wegener, R., Griffiths, P.T., Dinar, E., Rudich, Y. and Wahner, A. (2009), "Photochemical production of aerosols from real plant emissions", Atmos. Chem. Phys., 9(13), 4387-4406. https://doi.org/10.5194/acp-9-4387-2009
  53. Meylan, W.M. and Howard, P.H (1995), Sources and Estimations of Octanol-water Partition Coefficients and Water Solubilities, CRC Lewis Publishers, Boca Raton, Florida, U.S.A., 395-404.
  54. Meylan, W.M. and Howard, P.H. (1995), "Atom/fragment contribution method for estimating octanol-water partition coefficients", J. Pharm. Sci., 84(1), 83-92. https://doi.org/10.1002/jps.2600840120
  55. Meylan, W.M. and Howard, P.H. (1991), "Bond contribution method for estimating Henry's law constants", Environ. Toxicol. Chem., 10(10), 1283-1293. https://doi.org/10.1002/etc.5620101007
  56. Mmereki, B.T. and Donaldson, D.J. (2003), "Direct observation of the kinetics of an atmospherically important reaction at the air-aqueous interface", J. Phys. Chem. A, 107(50), 11038-11042. https://doi.org/10.1021/jp036119m
  57. Morawetz E. (1972), "Enthalpies of vaporization for a number of aromatic compounds", J. Chem. Thermodyn., 4(3), 455-460. https://doi.org/10.1016/0021-9614(72)90029-8
  58. Nirmalakhandan, N., Brennan, R.A. and Speece, R.E. (1997), "Predicting Henry's law constant and the effect of temperature on Henry's law constant", Water Res., 31(6), 1471-1481. https://doi.org/10.1016/S0043-1354(96)00395-8
  59. Organisation for Economic Co-operation and Development (1995), Test no. 107: Partition Coefficient (noctanol/water): Shake Flask Method, OECD Publishing.
  60. Peng, J. and Wan, A. (1998), "Effect of ionic strength on Henry's constants of volatile organic compounds", Chemosphere, 36(13), 2731-2740. https://doi.org/10.1016/S0045-6535(97)10232-6
  61. Preston, C.A., Laue, G. and Baldwin, I.T. (2001), "Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal?", Biochem. Syst. Ecol., 29(10), 1007-1023. https://doi.org/10.1016/S0305-1978(01)00047-3
  62. Raja, S., Ravikrishna, R., Kommalapati, R.R. and Valsaraj, K.T. (2005), "Monitoring of fogwater chemistry in the gulf coast urban industrial corridor: Baton Rouge (Louisiana)", Environ. Monit. Assess., 110(1-3), 99-120. https://doi.org/10.1007/s10661-005-6281-2
  63. Richards-Henderson, N.K., Hansel, A.K., Valsaraj, K.T. and Anastasio, C. (2014), "Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of soa: Kinetics and soa yields", Atmos. Environ., 95, 105-112. https://doi.org/10.1016/j.atmosenv.2014.06.026
  64. Riipinen, I., Yli-Juuti, T., Pierce, J.R., Petaja, T., Worsnop, D.R., Kulmala, M. and Donahue, N.M. (2012), "The contribution of organics to atmospheric nanoparticle growth", Nat. Geosci., 5(7), 453-458. https://doi.org/10.1038/ngeo1499
  65. Seinfeld, J.H. and Pandis, S.N. (1998), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley.
  66. Shiojiri, K., Kishimoto, K., Ozawa, R., Kugimiya, S., Urashimo, S., Arimura, G., Horiuchi, J., Nishioka, T., Matsui, K. and Takabayashi, J. (2006a), "Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens", Proc. Nat. Acad. Sci. USA, 103(45), 16672-16676. https://doi.org/10.1073/pnas.0607780103
  67. Shiojiri, K., Ozawa, R., Matsui, K., Kishimoto, K., Kugimiya, S. and Takabayashi, J. (2006b), "Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, cotesia glomerata and cotesia plutellae", J. Chem. Ecol., 32(5), 969-979. https://doi.org/10.1007/s10886-006-9047-6
  68. Shirts, M.R., Pitera, J.W., Swope, W.C. and Pande, V.S. (2003), "Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins", J. Chem. Phys., 119(11), 5740-5761. https://doi.org/10.1063/1.1587119
  69. Staudinger, J. and Roberts, P.V. (1996), "A critical review of Henry's law constants for environmental applications", Crit. Rev. Environ. Sci. Technol., 26(3), 205-297. https://doi.org/10.1080/10643389609388492
  70. Suzuki, T., Ohtaguchi, K. and Koide, K (1992), "Application of principal components analysis to calculate Henry's constant from molecular structure", Comput. Chem., 16(1), 41-52. https://doi.org/10.1016/0097-8485(92)85007-L
  71. Tewari, Y.B., Miller, M.M., Wasik, S.P. and Martire, D.E. (1982), "Aqueous solubility and octanol/water partition coefficient of organic compounds at $25.0^{\circ}C$", J. Chem. Eng. Data, 27(4), 451-454. https://doi.org/10.1021/je00030a025
  72. Thomas, J.L., Roeselova, M., Dang, L.X. and Tobias, D.J. (2007), "Molecular dynamics simulations of the solution-air interface of aqueous sodium nitrate", J. Phys. Chem. A, 111(16), 3091-3098. https://doi.org/10.1021/jp0683972
  73. Torres-Gomez, L. A., Barreiro-Rodriguez, G. and Galarza-Mondragon, A. (1988), "A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry", Thermochimica Acta, 124, 229-233. https://doi.org/10.1016/0040-6031(88)87025-4
  74. US EPA (2012), Estimation Program Interface Suite Part 4.11, US EPA, Washington, D.C., U.S.A.
  75. Vacha, R., Siu, S.W., Petrov, M., Bockmann, R.A., Barucha-Kraszewska, J., Jurkiewicz, P., Hof, M., Berkowitz, M.L. and Jungwirth, P. (2009), "Effects of alkali cations and halide anions on the dopc lipid membrane", J. Phys. Chem. A, 113(26), 7235-7243. https://doi.org/10.1021/jp809974e
  76. Valsaraj, K.T. (2004), "Adsorption of polycyclic aromatic hydrocarbons at the air-water interface and its role in atmospheric deposition by fog droplets", Environ. Toxicol. Chem., 23(10), 2318-2323. https://doi.org/10.1897/03-321
  77. Valsaraj, K.T. (2009), "Trace gas adsorption thermodynamics at the air-water interface: Implications in atmospheric chemistry", Pure Appl. Chem., 81(10), 1889-1901. https://doi.org/10.1351/PAC-CON-08-07-06
  78. Valsaraj, K.T. (2009), Elements of Environmental Engineering: Thermodynamics and Kinetics, CRC Press, Boca Raton, Florida, U.S.A.
  79. Wadia, Y., Tobias, D.J., Stafford, R. and Finlayson-Pitts, B.J. (2000), "Real-time monitoring of the kinetics and gas-phase products of the reaction of ozone with an unsaturated phospholipid at the air-water interface", Langmuir, 16(24), 9321-9330. https://doi.org/10.1021/la0006622
  80. Werner, J., Wernersson, E., Ekholm, V., Ottosson, N., Ohrwall, G., Heyda, J., Persson, I., Soderstrom, J., Jungwirth, P. and Bjorneholm, O. (2014), "The surface behavior of hydrated guanidinium and ammonium ions: A comparative study by photoelectron spectroscopy and molecular dynamics", J. Phys. Chem. B, 118(25), 7119-7127. https://doi.org/10.1021/jp500867w
  81. Wernersson, E. and Jungwirth, P. (2010), "Effect of water polarizability on the properties of solutions of polyvalent ions: Simulations of aqueous sodium sulfate with different force fields", J. Chem. Theor. Comput., 6(10), 3233-3240. https://doi.org/10.1021/ct100465g
  82. Williams, J., Poschl, U., Crutzen, P.J., Hansel, A., Holzinger, R., Warneke, C., Lindinger, W. and Lelieveld, J. (2001), "An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of surinam", J. Atmos. Chem., 38(2), 133-166. https://doi.org/10.1023/A:1006322701523

피인용 문헌

  1. Green Leaf Volatiles in the Atmosphere-Properties, Transformation, and Significance vol.12, pp.12, 2021, https://doi.org/10.3390/atmos12121655