DOI QR코드

DOI QR Code

Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2018.05.06
  • Accepted : 2018.05.03
  • Published : 2018.07.25

Abstract

Thermal buckling of nonlocal flexoelectric nanoplates incorporating surface effects is analyzed for the first time. Coupling of strain gradients and electrical polarizations is introduced by flexoelectricity. It is assumed that flexoelectric nanoplate is subjected to uniform and linear temperature distributions. Long range interaction between atoms of nanoplate is modeled via nonlocal elasticity theory. The residual surface stresses which are usually neglected in modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physic of problem. A Galerkin-based approach is implemented to solve the governing equations derived from Hamilton's principle are solved. The verification of obtained results is performed by comparing buckling loads of flexoelectric nanoplate with previous data. It is shown that buckling loads of flexoelectric nanoplate are significantly affected by thermal loading type, temperature change, nonlocal parameter, surface effect, plate thickness and boundary conditions.

Keywords

References

  1. Ansari, R., Oskouie, M.F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029
  2. Asemi, H.R., Asemi, S.R., Farajpour, A. and Mohammadi, M. (2015), "Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads", Phys. E: Low-Dimens. Syst. Nanostruct., 68, 112-122. https://doi.org/10.1016/j.physe.2014.12.025
  3. Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of doublepiezoelectric-nanoplate systems with various boundary conditions using DQM", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009
  4. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  5. Ebrahimi, F. and Barati, M.R. (2016b), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Just Accepted.
  6. Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  7. Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  8. Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 28(11), 1472-1490.
  9. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  10. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  11. Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  12. Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  13. Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  14. Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
  15. Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952.
  16. Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  17. Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.
  18. Ebrahimi, F. and Barati, M.R. (2016o), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  19. Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  20. Ebrahimi, F. and Barati, M.R. (2016q), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Just Accepted.
  21. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  22. Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316. https://doi.org/10.1007/s00339-015-9512-6
  23. Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
  24. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  25. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplatebased NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  26. Ebrahimi, F. and Salari, E (2015c), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  27. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  28. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  29. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  30. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015a), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  31. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccan., 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
  32. Ebrahimi, F., Salari, E., Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  33. Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  34. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  35. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  36. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Analy., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  37. Hosseini, M., Jamalpoor, A. and Fath, A. (2016), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccan., 52(6), 1381-1396.
  38. Jiang, X., Huang, W. and Zhang, S. (2013), "Flexoelectric nanogenerator: Materials, structures and devices", Nano Energy, 2(6), 1079-1092. https://doi.org/10.1016/j.nanoen.2013.09.001
  39. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018
  40. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  41. Li, Y.S. and Pan, E. (2016), "Bending of a sinusoidal piezoelectric nanoplate with surface effect", Compos. Struct., 136, 45-55. https://doi.org/10.1016/j.compstruct.2015.09.047
  42. Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020
  43. Liang, X., Hu, S. and Shen, S. (2015), "Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity", Smart Mater. Struct., 24(10), 105012. https://doi.org/10.1088/0964-1726/24/10/105012
  44. Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys. D: Appl. Phys., 49(11), 115307. https://doi.org/10.1088/0022-3727/49/11/115307
  45. Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), "Nonlinear vibration of nonlocal piezoelectric nanoplates", Int. J. Struct. Stab. Dyn., 15(8), 1540013. https://doi.org/10.1142/S0219455415400131
  46. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  47. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", Int. J. Struct. Stab. Dyn., 14(3), 1350067. https://doi.org/10.1142/S0219455413500673
  48. Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2016), "Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory", Mech. Adv. Mater. Struct., Just Accepted.
  49. Ochs, S., Li, S., Adams, C. and Melz, T. (2017), Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems, Smart Structures and Materials, Springer International Publishing.
  50. Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
  51. Wang, K.F. and Wang, B.L. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Phys. E: Low-Dimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019
  52. Wang, K.F. and Wang, B.L. (2012), "The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects", Europhys. Lett., 97(6), 66005. https://doi.org/10.1209/0295-5075/97/66005
  53. Wang, W., Li, P., Jin, F. and Wang, J. (2016), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775. https://doi.org/10.1016/j.compstruct.2016.01.035
  54. Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703
  55. Yan, Z. and Jiang, L.Y. (2012), Vibration and Buckling Analysis of a Piezoelectric Nanoplate Considering Surface Effects and In-Plane Constraints, Proc. R. Soc. A, The Royal Society.
  56. Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mech., 226(9), 3097-3110. https://doi.org/10.1007/s00707-015-1373-8
  57. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
  58. Zhang, C., Chen, W. and Zhang, C. (2013), "Two-dimensional theory of piezoelectric plates considering surface effect", Eur. J. Mech.-A/Sol., 41, 50-57. https://doi.org/10.1016/j.euromechsol.2013.02.005
  59. Zhang, J., Wang, C. and Chen, W. (2014b), "Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads", Meccan., 49(1), 181-189. https://doi.org/10.1007/s11012-013-9784-x
  60. Zhang, L.L., Liu, J.X., Fang, X.Q. and Nie, G.Q. (2014a), "Sizedependent dispersion characteristics in piezoelectric nanoplates with surface effects", Phys. E: Low-Dimens. Syst. Nanostruct., 57, 169-174. https://doi.org/10.1016/j.physe.2013.11.007
  61. Zhang, Z. and Jiang, L. (2014), "Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity", J. Appl. Phys., 116(13), 134308. https://doi.org/10.1063/1.4897367
  62. Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. Appl. Phys., 116(1), 014307. https://doi.org/10.1063/1.4886315

Cited by

  1. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2018, https://doi.org/10.12989/sem.2019.70.4.407
  2. Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis vol.76, pp.5, 2018, https://doi.org/10.12989/sem.2020.76.5.619