DOI QR코드

DOI QR Code

Performance of a submerged membrane bioreactor for wastewater mimicking fish meal processing effluent

  • Lopez, Guadalupe (Department of Chemical Engineering and Metallurgy, Universidad de Sonora) ;
  • Almendariz, Francisco J. (Department of Chemical Engineering and Metallurgy, Universidad de Sonora) ;
  • Heran, Marc (IEM, Univ Montpellier, CNRS, ENSCM) ;
  • Lesage, Geoffroy (IEM, Univ Montpellier, CNRS, ENSCM) ;
  • Perez, Sergio (Environmental Engineering Technology, Universidad Politecnica de Chiapas)
  • Received : 2017.05.09
  • Accepted : 2018.01.23
  • Published : 2018.07.25

Abstract

The objective of this work was to analyze organic matter removal, nitrification, biomass growth and membrane fouling in a submerged flat-sheet membrane bioreactor, fed with synthetic wastewater, of similar composition to the effluents generated in a fish meal industry. After biomass acclimatization with saline conditions of 12 gNaCl/L and COD/N ratio of 15 in the bioreactor, results showed that the organic matter removal was higher than 90%, for all organic loading rates (0.8, 1, 1.33 and $2gCOD/L{\cdot}d$) and nitrogen loading rates (0.053, 0.067, 0.089 and $0.133gN/L{\cdot}d$) tested during the study. However, nitrification was only carried out with the lowest OLR ($0.8gCOD/L{\cdot}d$) and NLR ($0.053gN/L{\cdot}d$). An excessive concentration of organic matter in the wastewater appears as a limiting factor to this process' operating conditions, where nitrification values of 65% were reached, including nitrogen assimilation to produce biomass. The analysis of membrane fouling showed that the bio-cake formation at the membrane surface is the most impacting mechanism responsible of this phenomenon and it was demonstrated that organic and nitrogen loading rates variations affected membrane fouling rate.

Keywords

Acknowledgement

Supported by : National Council of Science and Technology (CONACYT)

References

  1. Ahn, Y.T., Kang, S.T., Chae, S.R., Lee, C.Y., Bae, B.U. and Shin, H.S. (2006), "Simultaneous high-strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor", Desalination, 202(1), 114-121. https://doi.org/10.1016/j.desal.2005.12.046
  2. Aloui, F., Khoufi, S., Loukil, S. and Sayadi, S. (2009), "Performances of an activated sludge process for the treatment of fish processing saline wastewater", Desalination, 248(1), 68-75.
  3. APHA, AWWA and WEF (2012), Standard Methods for Examination of Water and Wastewater, 22nd ed., APHA, AWWA and WEF, Washington, DC, U.S.A.
  4. Artiga, P., Garcia-Torielloa, G., Mendez, R. and Garrido, J.M. (2008), "Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory", Desalination, 221(1), 518-525. https://doi.org/10.1016/j.desal.2007.01.112
  5. Aslam, M., Charfi, A., Lesage, G., Heran, M. and Kim, J. (2017), "Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling", Chem. Eng. J., 307(1), 897-913. https://doi.org/10.1016/j.cej.2016.08.144
  6. Boonyungyuen, W., Wonglertarak, W. and Wichitsathian, B. (2014), "Effect of organic loading rate on the performance of a membrane bioreactor (MBR) treating textile wastewater", Proceedings of the International Conference on Chemical, Environment and Biological Sciences, Kuala Lumpur, Malaysia, September.
  7. Boopathy, R., Bonvillain, C., Fontenot, Q. and Kilgen, M. (2007), "Biological treatment of low salinity shrimp aquaculture wastewater using sequencing batch reactor", Biodeter., Biodegr., 59(1), 16-17. https://doi.org/10.1016/j.ibiod.2006.05.003
  8. Cao, S.M.S., Fontoura, G.A.T., Dezotti, M. and Bassin, J.P. (2016), "Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system", Environ. Technol., 37(1), 96-107. https://doi.org/10.1080/09593330.2015.1063708
  9. Carrera, J., Vicent, T. and Lafuente, J. (2004), "Effect of influent COD/N ratio on biological nitrogen removal (BNR) from highstrength ammonium industrial wastewater", Process Biochem., 39(12), 2035-2041. https://doi.org/10.1016/j.procbio.2003.10.005
  10. Cheng, S., Leiknes, T., Weitzenbock, J. and Thorstensen, B. (2010), "Salinity effect on a biofilm-MBR process for shipboard wastewater treatment", Sep. Purif. Technol., 72(1), 380-387. https://doi.org/10.1016/j.seppur.2010.03.010
  11. Chen, Y., He, H., Liu, H., Li, H., Zeng, G., Xia, X. and Yang, C. (2017), "Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors", Bioresour. Technol., 249(1), 890-899.
  12. Chowdhury, P., Viraraghavan, T. and Srinivasan, A. (2010), "Biological treatment processes for fish processing wastewater -A review", Bioresour. Technol., 101(2), 439-449. https://doi.org/10.1016/j.biortech.2009.08.065
  13. Cristovao, R.O., Goncalves, C., Botelho, C.M., Martins, R.J.E., Loureiro, J.M. and Boaventura, R.A.R. (2015), "Fish canning wastewater treatment by activated sludge: Application of factorial design optimization biological treatment by activated sludge of fish canning wastewater", Water Resour. Ind., 10(1), 29-38. https://doi.org/10.1016/j.wri.2015.03.001
  14. Del Pozo, R., Diez, V. and Salazar, G. (2010), "Nitrogen and organic matter removal from slaughterhouse wastewater in a lab-scale aerobic fixed-film bioreactor", Environ. Technol., 25(6), 713-721. https://doi.org/10.1080/09593330.2004.9619361
  15. Di Bella, G., Di Trapani, D., Torregrossa, M. and Viviani, G. (2013), "Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling behaviour", Bioresour. Technol. 147(1), 614-618. https://doi.org/10.1016/j.biortech.2013.08.025
  16. Dincer, A.R. and Kargi, F. (1999), "Salt inhibition of nitrification and denitrification in saline wastewater", Environ. Technol., 20(11), 1147-1153. https://doi.org/10.1080/09593332008616912
  17. Direccion general de planeacion y ordenamiento territorial (DGPOT) (2014), Programa de ordenamiento territorial de la zona conurbada Guaymas-Empalme-San Carlos; Mexico.archivos.guaymas.gob.mx/archivos/Presidencia/PLAN%20MUNICIPAL%20DE%20DESARROLLO%202013-2015.pdf.
  18. Drews, A. (2010), "Membrane fouling in membrane bioreactors-Characterization, contradictions, cause and cures", J. Membr. Sci., 363(1), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
  19. Fontenot, Q., Bonvillain, C., Kilgen, M. and Boopathy, R. (2007), "Effects of temperature, salinity and carbon: Nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater", Bioresource Technol., 98(9), 1700-1703. https://doi.org/10.1016/j.biortech.2006.07.031
  20. Garzon-Zuniga, M., Lessard, P., Aubry, G. and Buelna, G. (2005), "Nitrogen elimination mechanisms in an organic media aerated biofilter treating pig manure", Environ. Technol., 26(4), 361-371. https://doi.org/10.1080/09593332608618552
  21. Hao, L. and Liao, B.Q. (2015), "Effect of organic matter to nitrogen ratio on membrane bioreactor performance", Environ. Technol., 36(20), 2674-2680. https://doi.org/10.1080/09593330.2015.1043353
  22. He, H., Chen, Y., Li, X., Cheng, Y., Yang, C. and Zeng, G. (2017), "Influence of salinity on microorganisms in activated sludge processes: A review", Biodeterior. Biodegradation, 119(1), 520-527. https://doi.org/10.1016/j.ibiod.2016.10.007
  23. Hong, J., Li, W., Lin, B., Zhan, M., Liu, C. and Chen, B.Y. (2013), "Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community", Desalination, 316(1), 23-30. https://doi.org/10.1016/j.desal.2013.01.015
  24. Huilinir, C., Aspe, E. and Roeckel, M. (2011), "Modelling of the denitrification/anaerobic digestion process of salmon fishery wastewater in a biofilm tubular reactor", J. Environ. Manage., 92(1), 1591-1608. https://doi.org/10.1016/j.jenvman.2011.01.015
  25. Jemli, M., Karray, F., Feki, F., Loukil, S., Mhiri, N., Aloui, F. and Sayadi, S. (2015), "Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia)", J. Environ. Sci., 30(1), 102-112. https://doi.org/10.1016/j.jes.2014.11.002
  26. Jiang, Y., Wei, L., Zhang, H.N., Yang, K. and Wang, H.Y. (2016), "Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater", Bioresour. Technol., 218(1), 146-152. https://doi.org/10.1016/j.biortech.2016.06.055
  27. Johir, M.A., Vigneswaran, S., Sathasivan, A., Kandasamy, J. and Chang, C.Y. (2012), "Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor", Bioresour., Technol., 113(1), 154-160. https://doi.org/10.1016/j.biortech.2011.12.002
  28. Judd, S.J. (2016), "The status of industrial and municipal effluent treatment with membrane bioreactor technology", Chem. Eng. J., 305(1), 37-45. https://doi.org/10.1016/j.cej.2015.08.141
  29. Khannous, L., Souissi, N., Ghorbel, B., Jarboui, R., Kallel, M., Nasri, M. and Gharsallah, N. (2003), "Treatment of saline wastewaters from marine-products processing factories by activated sludge reactor", Environ. Technol., 24(10), 1261-1268. https://doi.org/10.1080/09593330309385668
  30. Komorowska-Kaufman, M., Majcherek, H. and Klaczynski, E. (2006), "Factors affecting the biological nitrogen removal from wastewater", Process Biochem., 41(5), 1015-1021. https://doi.org/10.1016/j.procbio.2005.11.001
  31. Lahdhiri, A., Grasmick, A., Lesage, G., Hannachi, A. and Heran, M. (2015), "Calibration of ASM-SMP model under specific experimental conditions for membrane bioreactor application", Current Environ. Eng., 2(1), 11-18. https://doi.org/10.2174/221271780201150831143657
  32. Lahdhiri, A., Sid, S., Lesage, G. and Heran, M., (2017), "Impact of decreasing COD/N ratio on nitrogen removal and fouling in a membrane bioreactor for urban wastewater treatment", Desalin. Water Treat., 80(1), 121-132. https://doi.org/10.5004/dwt.2017.21009
  33. Lefebvre, O. and Moletta, R. (2006), "Treatment of organic pollution in industrial saline wastewater: A literature review", Water Res., 40(20), 3671-3682. https://doi.org/10.1016/j.watres.2006.08.027
  34. Liu, L., Liu, J., Gao, B., Yang, F. and Chellam, S. (2012), "Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole", J. Membr. Sci., 394(1), 202-208.
  35. Meng, F., Zhang, H.M., Li, Y.S., Zhang, X.W., Yang, F.L., Xiao, J.N. (2005), "Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis", Sep. Purif. Technol. 44(1), 250-257. https://doi.org/10.1016/j.seppur.2005.01.015
  36. Meng, F., Chae, S.R., Shin, H.S., Yang, F. and Zhou, Z. (2012), "Recent advances in membrane bioreactors: Configuration development, pollutant elimination and sludge reduction", Environ. Eng. Sci., 29(3), 139-160. https://doi.org/10.1089/ees.2010.0420
  37. Muthukumaran, S. and Baskaran, K. (2013), "Organic and nutrient reduction in a fish processing facility-a case study", Biodeterior. Biodegrad., 85(1), 563-570. https://doi.org/10.1016/j.ibiod.2013.03.023
  38. Nagaoka, N., Kono, S., Yamanishi, S. and Miya, A. (2000), "Influence of organic loading rate on membrane fouling in membrane separation activated sludge process", Water Sci. Technol., 41(1), 355-362. https://doi.org/10.2166/wst.2000.0679
  39. Najafpour, G.D., Zinatizadeh, A.A.L. and Lee, L.K. (2006), "Performance of a three-stage aerobic RBC reactor in food canning wastewater treatment", Biochem. Eng. J., 30(1), 297-302. https://doi.org/10.1016/j.bej.2006.05.013
  40. Panswad, T. and Anan, C. (1999), "Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds", Water Res., 33(1), 1165-1172. https://doi.org/10.1016/S0043-1354(98)00314-5
  41. Pellegrin, M.L., Wisniewsk, C., Grasmick, A., Tazi-pain, A. and Buissona, H. (2002), "Respirometric needs of heterotrophic populations developed in an immersed membrane bioreactor working in sequenced aeration", Biochem. Eng. J., 11(1), 2-12. https://doi.org/10.1016/S1369-703X(02)00005-0
  42. Reid, E., Liu, X. and Judd, S.J. (2006), "Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor", J. Membr. Sci., 283(1), 164-171. https://doi.org/10.1016/j.memsci.2006.06.021
  43. Rene, E.R., Kim, S.J. and Park, H.S. (2008), "Effect of COD/N ratio and salinity on the performance of sequencing batch reactors", Bioresource Technol., 99(4), 839-846. https://doi.org/10.1016/j.biortech.2007.01.037
  44. Rosenberger, S., Evenblij, H., Te-Poele, S., Wintgens, T. and Laabs, C. (2005), "The importance of liquid phase analysis to understand fouling in membrane assisted activated sludge processes-Six case studies of different European research groups", J. Membr. Sci., 263(1), 113-126. https://doi.org/10.1016/j.memsci.2005.04.010
  45. Ruiz, G., Jeison, D. and Chamy, R. (2006), "Development of denitrifying and methanogenic activities in USB reactors for the treatment of wastewater: Effect of COD/N ratio", Process Biochem., 41(1), 1338-1342. https://doi.org/10.1016/j.procbio.2006.01.007
  46. Sridang, C., Pottier, A., Wisniewski, C. and Grasmick, A. (2008), "Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment", J. Membr. Sci., 317(1), 43-49. https://doi.org/10.1016/j.memsci.2007.11.011
  47. Sun, C., Leiknes, T., Weitzenbock, J. and Thorstensen, B. (2010), "Salinity effect on a biofilm-MBR process for shipboard wastewater treatment", Sep. Purif. Technol., 72(3), 380-387. https://doi.org/10.1016/j.seppur.2010.03.010
  48. Sun, S.P., Pellicer, C., Merkey, B., Zhou, Q., Xia, S.Q., Yang, D.H., Sun, J.H. and Smets, B.F. (2010), "Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review", Environ. Eng. Sci., 27(2), 111-126. https://doi.org/10.1089/ees.2009.0100
  49. Thongmak, N., Sridang, P., Puetpaiboon, U., Heran, M., Lesage, G. and Grasmick, A. (2015), "Performances of a submerged anaerobic membrane bioreactor (AnMBR) for latex serum treatment", Desalination, 57(44), 1-13.
  50. Vendramel, S., Dezotti, M. and Sant'Anna, G.L. (2011), "Nitrification of an industrial wastewater in a moving-bed biofilm reactor: Effect of salt concentration", Environ. Technol., 32(1), 837-846. https://doi.org/10.1080/09593330.2010.514949
  51. Wang, Y., Huang, X. and Yuan, Q. (2005), "Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor", Process Biochem., 40(5), 1733-1739. https://doi.org/10.1016/j.procbio.2004.06.039
  52. Wang, Z., van Loosdrecht, M.C.M. and Saikaly, P.E. (2017), "Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge", Water Res., 124(1), 702-712. https://doi.org/10.1016/j.watres.2017.08.026
  53. Yang, Y., Lesage, G., Barret, M., Bernet, N., Grasmick, A., Hamelin, J. and Heran, M. (2014), "New urban wastewater treatment with Autotrophic Membrane Bioreactor (AutoMBR) at low COD/N substrate ratio", Water Sci. Technol., 69(5), 960-965. https://doi.org/10.2166/wst.2013.814
  54. Zhang, Y., Jiang, W.L., Xu, R.X., Wang, G.X. and Xie, B. (2017), "Effect of short-term salinity shock on unacclimated activated sludge with pressurized aeration in a sequencing batch reactor", Sep. Purif. Technol., 178(1), 200-206. https://doi.org/10.1016/j.seppur.2017.01.048