References
- Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), "Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions", Compos. Struct., 72(1), 91-104. https://doi.org/10.1016/j.compstruct.2004.10.019
- Akbarzadeh Khorshidi, M., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110(1), 160-169. https://doi.org/10.1016/j.ijmecsci.2016.03.006
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1235-1254.
- Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Probl. Eng., 2013, 14.
- Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
- Akbas, S.D. (2014a), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955
- Akbas, S.D. (2014b), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51.
- Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dynam., 15(4), 1450065. https://doi.org/10.1142/S0219455414500655
- Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477
- Akbas, S.D. (2015a), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1).
- Akbas, S.D. (2015b), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451. https://doi.org/10.12989/sem.2015.54.3.433
- Akbas, S.D. (2015c), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
- Akbas, S.D. (2015d), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1).
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dynam., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/SCS.2017.24.5.579
- Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207.
- Akbas, S.D. (2017e), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/CSM.2017.6.4.399
- Akbas, S.D. (2017f), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155.
- Akbas, S.D. (2017g), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764
- Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
- Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/SEM.2018.66.1.027
- Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/SCS.2018.26.6.733
- Al Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038
- Almeida, C.A., Albino, J.C.R., Menezes, I.F.M. and Paulino, G.H. (2011), "Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation", Mech. Res. Commun., 38(8), 553-559. https://doi.org/10.1016/j.mechrescom.2011.07.006
- Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Periodica Polytechnica. Eng., Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015a), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Atmane, H.A., Tounsi, A. and Bernard, F. (2015b), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84.
- Babilio, E. (2014), "Dynamics of functionally graded beams on viscoelastic foundation", Int. J. Struct. Stab. Dynam., 14(8), 1440014, Doi: 10.1142/S0219455414400148.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016a), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429
- Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016b), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 1-58.
- Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F. and Salari, E. (2015), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES Comput Model Eng Sci, 105(2), 151-181
- Ebrahimi, F. and Jafari, A. (2016a), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, 20.
- Ebrahimi, F. and Jafari, A. (2016b), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
- Ebrahimi, F. Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205
- Ebrahimi, F. and Farzamandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 1-37
- Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016c), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936.
- Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
- Elmaguiri, M., Haterbouch, M., Bouayad, A. and Oussouaddi, O. (2015), "Geometrically nonlinear free vibration of functionally graded beams", J. Mater. Environ. Sci., 6(12), 3620-3633.
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech.-A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Felippa, C.A. (2017), "Notes on nonlinear finite element methods",url:http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf.
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999
- Hadji, L. and Bedia, E.A.A. (2015), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3) 273-287. https://doi.org/10.12989/was.2015.21.3.273
- Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
- Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143
- Hosseini, M. and Fazelzadeh, S.A. (2011), "Thermomechanical stability analysis of functionally graded thin-walled cantilever pipe with flowing fluid subjected to axial load", Int. J. Struct. Stab. Dynam., 11(3), 513-534. https://doi.org/10.1142/S0219455411004154
- Hui-Shen, S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020
- Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038
- Kolakowski, Z. and Teter, A. (2015), "Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression", Compos. Struct., 123(1), 257-262. https://doi.org/10.1016/j.compstruct.2014.12.051
- Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Nonlinear Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
- Kang, Y.A. and Li, X.F., (2010), "Large deflections of a non-linear cantilever functionally graded beam", J. Reinf. Plast. Comp., 29(12), 1761-1774. https://doi.org/10.1177/0731684409103340
- Ke, L.L., Yang, J. and Kitipornchai, S. (2009), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003
- Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
- Kocaturk, T., Simsek, M. and Akbas, S.D. (2011), "Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material", Sci. Eng. Compos. Mater., 18, 21-34.
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made offunctionally graded material under thermal loading". Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
- Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), "Thermal postbuckling of functionally graded material Timoshenko beams", Appl. Math. Mech., (English Edition), 26(6), 803-810.
- Li, Q. and Li, S. (2011), "Post-bucking configuration of a functionally graded material column under distributed load", Fuhe Cailiao Xuebao(Acta Materiae Compositae Sinica), 28(3), 192-196.
- Li, L.Q. and Shao, Q.H. (2014), "Non-linear analysis of a FGM cantilever beam supported on a winkler elastic foundation", Appl. Mech. Mater., 602, 131-134.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016a), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38, 2193-2211. https://doi.org/10.1007/s40430-015-0482-6
- Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016b), "Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749. https://doi.org/10.1016/j.apm.2015.09.093
- Mohanty, S.C., Dash, R.R. and Rout, T. (2012), "Static and dynamic stability analysis of a functionally graded Timoshenko beam", Int. J. Struct. Stab. Dynam., 12(4) Article ID 1250025, 33 pages.
- Mouaici, F., Benyoucef, S., Atmane, H.A. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429
- Nguyen, D.K., Gan, B.S. and Trinh, T.H. (2014), "Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material", Struct. Eng. Mech., 49(6) 727-743. https://doi.org/10.12989/sem.2014.49.6.727
- Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Des., 2, 117-128. https://doi.org/10.1007/s10999-005-4446-3
- Song, X. and Li, S. (2008), "Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads", Adv. Mater. Res., 33-37, 699-706. https://doi.org/10.4028/www.scientific.net/AMR.33-37.699
- Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM mTimoshenko beams on nonlinear elastic foundation", J. Therm. Stresses, 39(1), 11-26. https://doi.org/10.1080/01495739.2015.1120627
- Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress Theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
- Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., 58(3), 515-532. https://doi.org/10.12989/sem.2016.58.3.515
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Yan, T., Yang, J. and Kitipornchai, S. (2012), "Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation", Nonlinear Dynam., 67(1), 527-540. https://doi.org/10.1007/s11071-011-0003-9
- Zhang, D.G. and Zhou, H.M. (2014), "Nonlinear bending and thermal post-buckling analysis of FGM beams resting on nonlinear elastic foundations", CMES Comput. Model. Eng., 100(3) 201-222.
- Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342.
Cited by
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2018, https://doi.org/10.12989/scs.2020.36.3.293
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment vol.16, pp.3, 2018, https://doi.org/10.2140/jomms.2021.16.371
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2018, https://doi.org/10.12989/gae.2021.24.1.091