Acknowledgement
Supported by : University of Kashan
References
- Amadian, M. T., Mojahedi, M. and Moeenfard, H. (2009), " Free vibration analysis of a nonlinerar beam using bomotopty and modified lindstedt-poincare methods", J. Solid. Mech., 1, 29-36.
- Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (fgm) ", Compos. Part B: Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Alibeigloo, A. (2014), "Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers", Compos. Struct., 118, 482-495. https://doi.org/10.1016/j.compstruct.2014.08.004
- Amal, M.K.E. and Mahmoud, M.F. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, S. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Nonlinear vibrations of functionally graded mindlin microplates based on the modified couple stress theory", Compos. Struct., 114, 124-134. https://doi.org/10.1016/j.compstruct.2014.04.013
- Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37, 289-302. https://doi.org/10.1007/s10483-016-2039-6
- Arefi, M., Pourjamshidian, M. and Ghorbanpour Arani, A. (2018), "Nonlinear free and forced vibration analysis of embedded functionally graded sandwich micro beam with moving mass", J. Sandw. Struct. Mater., 20 (4), 462-492. https://doi.org/10.1177/1099636216658895
- Arefi, M. and Zenkour, A.M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater.Res.Express., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
- Arefi, M. and Zenkour, A.M. (2017a), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
- Arefi, M. and Zenkour, A.M. (2017b), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., Doi: 1099636217697497.
- Arefi, M. and Zenkour, A.M. (2017c), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mat. Syst. Str., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
- Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A., 123(3), 202.
- Arefi, M. and Zenkour, A.M. (2017e), "Vibration and bending analysis of a sandwich microbeam with two integrated piezomagnetic face-sheets", Compos. Struct., 159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
- Asghari, M., et al. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng Sci., 48, 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
- Ashrafi, B. and Hubert, P. (2006), "Vengallatore S. Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems", Nanotechnology, 17, 4895-4903. https://doi.org/10.1088/0957-4484/17/19/019
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- El-Borgi, S., Fernandes, R. and Reddy J.N. (2015). "Nonlocal Free and Forced Vibrations of Graded Nanobeams Resting on a Nonlinear Elastic Foundation", Int. J. Nonlinear. Mech. 77, 348-363. https://doi.org/10.1016/j.ijnonlinmec.2015.09.013
- Esawi, A. and Farag, M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Design, 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fidelusa, J.D., Wiesela, E., Gojnyb, F.H., Schulteb, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A-Appl., 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound. Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part. B., 42, 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
- Gholami, R., Darvizeh, A., Ansari, R. and Hosseinzadeh, M. (2014), "Sizedependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory", Meccanica. 49(7), 1679-1695. https://doi.org/10.1007/s11012-014-9944-7
- Ghorbanpour Arani, A., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart. Struct. Syst., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Ghorbanpour Arani, A., Vossough, H. and Kolahchi, R. (2015), "Nonlinear vibration and instability of a visco-Pasternak coupled double-DWBNNTs-reinforced microplate system conveying microflow", J. Mech. Eng. Sci., 1-17.
- Ghorbanpour Arani, A., Vossough, H., Kolahchi, R. and Mosallaie Barzoki, A.A. (2012), "Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM", J. Mech. Sci. Tech., 26 (10), 3047-3057. https://doi.org/10.1007/s12206-012-0816-6
- Hosseini, S.M., Mareishi, S., Kalhori, H. and Rafiee, M. (2014). "Large Amplitude Free and Forced Oscillations of Functionally Graded Beams", Mech. Adv. Mater. Struct., 21, 255-262. https://doi.org/10.1080/15376494.2012.680670
- Jam, J.E. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. https://doi.org/10.1016/j.compstruct.2015.04.045
- Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of sigmoid functionally graded materials (s-fgm) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
- Kanani, A.S., Niknam, H., Ohadi, A.R. and Aghdam, M.M. (2014), "Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam", Compos. Struct., 115, 60-68. https://doi.org/10.1016/j.compstruct.2014.04.003
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Kiani, K. (2015), "Wave characteristics in aligned forests of single-walled carbon nanotubes using nonlocal discrete and continuous theories", Int. J. Mech. Sci., 90, 278-309. https://doi.org/10.1016/j.ijmecsci.2014.11.011
- Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comp. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
- Li, L, Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
- Li, L., Hu, Y. and Ling, L. (2015), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E, 75, 118-124.
- Li, Y., Wang, S., Wang, Q. and Xing, M. (2016), "Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber) /carbon nanotube composites", Compos. Part B: Eng., 97, 62-67. https://doi.org/10.1016/j.compositesb.2016.04.053
- Liew, K.M., Hu, Y.G. and He, X.Q. (2008), "Flexural wave propagation in single-walled carbon nanotubes", J. Comput. Theor. Nanosci., 5(4), 581-586. https://doi.org/10.1166/jctn.2008.019
- Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", Int. J. Solids. Struct., 40, 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9
- Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B: Eng., 87, 132-148 https://doi.org/10.1016/j.compositesb.2015.10.007
- Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
- Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
- Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, Wiley-VCH.
- Nazemnezhad, R., Hosseini and Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
- Pang, M., Zhang, Y.Q. and Chen, W.Q. (2015), "Transverse wave propagation in viscoelastic single-walled carbon nanotubes with small scale and surface effects", J. Appl. Phys., 117, 024305. https://doi.org/10.1063/1.4905852
- Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for non-linear vibration of beams", Mech. Res. Commun., 36, 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
- Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotubereinforced composite plates with initial geometric imperfection", Int. J. Nonlinear. Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
- Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
- Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A., 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
- Reddy, J.N., El-Borgi, S. and Romanoff, J. (2014), "Non-linear analysis of functionally graded microbeams using eringens nonlocal differential model", Int. J. Nonlinear. Mech., 67, 308-318. https://doi.org/10.1016/j.ijnonlinmec.2014.09.014
- Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015). "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
- Setoodeh, A. and Afrahim, S. (2014), "Nonlinear dynamic analysis of fg micro-pipes conveying fluid based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013
- Shakeri, M., Akhlaghi, M. and Hoseini, S.M. (2006), "Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", Compos. Struct., 76(1), 174-181. https://doi.org/10.1016/j.compstruct.2006.06.022
- Shen, H.S. and Zhang, C.L. (2010). "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Design, 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shen, H.S. and Zhang, C.L. (2012), "Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part I: Theory and solutions", Int. J. Nonlinear. Mech., 47, 1045-1054. https://doi.org/10.1016/j.ijnonlinmec.2012.05.005
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comp. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Wu, H., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections SGT", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
- Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stresses., 40, 167-184. https://doi.org/10.1080/01495739.2016.1229146
- Zhang, Z.J. and Paulino, G.H. (2007), "Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements", Int. J. Solids. Struct., 44(11), 3601-3626. https://doi.org/10.1016/j.ijsolstr.2005.05.061
Cited by
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157