Acknowledgement
Supported by : National Natural Science Foundation of China, Shanxi National Science Foundation of China
References
- Arshian, A.H. and Morgenthal, G. (2017), "Three-dimensional progressive collapse analysis of reinforced concrete frame structures subjected to sequential column removal", Eng. Struct., 132, 87-97. https://doi.org/10.1016/j.engstruct.2016.11.018
- Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), "Classification system for beam-to-column connections", J. Struct. Eng., 116(11), 3059-3076. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3059)
- Chan, S.L. and Chui, P.T. (2000), "Nonlinear static and cyclic analysis of steel frames with semi-rigid connections", Elsevier, Amsterdam, Netherlands.
- Chen, C.H., Zhu, Y.F., Yao, Y., Huang, Y. and Long, X. (2016a), "An evaluation method to predict progressive collapse resistance of steel frame structures", J. Constr. Steel Res., 22, 238-250.
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016b), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., Int. J., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016c), "The finite element model research of the pre-twisted thin-walled beam", Struct. Eng. Mech., Int. J., 57(3), 389-402. https://doi.org/10.12989/sem.2016.57.3.389
- Chen, C., Zhang, Q., Keer, L.M., Yao, Y. and Huang, Y. (2018a), "The multi-factor effect of tensile strength of concrete in numerical simulation based on the Monte Carlo random aggregate distribution", Constr. Build. Mater., 165, 585-595. https://doi.org/10.1016/j.conbuildmat.2018.01.056
- Degertekin, S.O. and Hayalioglu, M.S. (2004), "Design of nonlinear semi-rigid steel frames with semi-rigid column bases", Electron. J. Struct. Eng., 4, 1-16.
- Federal Emergency Management Agency 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Washington D.C., USA.
- Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
- Fu, Q.N., Tan, K.H., Zhou, X.H. and Yang, B. (2017), "Numerical simulations on three-dimensional composite structural systems against progressive collapse", J. Const. Steel Res., 135, 125-136. https://doi.org/10.1016/j.jcsr.2017.04.014
- Ihaddoudene, A.N.T., Saidani, M. and Chemrouk, M. (2009), "Mechanical model for the analysis of steel frames with semirigid joints", J. Constr. Steel Res., 65(3), 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
- Jones, S.W., Kirby, P.A. and Nethercort, D.A. (1983), "The analysis of frames with semi-rigid connections-a state-of-theart report", J. Constr. Steel Res., 3(2), 2-13. https://doi.org/10.1016/0143-974X(83)90017-2
- Khuyen, H.T. and Iwasaki, E. (2016), "An approximate method of dynamic amplification factor for alternate load path in redundancy and progressive collapse linear static analysis for steel truss bridges", Case Stud. Struct. Eng., 6, 53-62. https://doi.org/10.1016/j.csse.2016.06.001
- Li, Y., Lu, X.Z., Guan, H. and Ye, L.P. (2014), "An energy-based assessment on dynamic amplification factor for linear static analysis in progressive collapse design of ductile RC frame structures", Adv. Struct. Eng., 17(8), 1217-1225. https://doi.org/10.1260/1369-4332.17.8.1217
- Liu, M. (2013a), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011
- Liu, M. (2013b), "Discussion of -Alternate Path Method in Progressive Collapse Analysis: Variation of Dynamic and Nonlinear Load Increase Factors" by Aldo McKay, Kirk Marchand, and Manuel Diaz", Pract. Period. Struct. Des. Constr., 21(2), 07016001.
- Liu, M. (2016), "Discussion of -Alternate Path Method in Progressive Collapse Analysis: Variation of Dynamic and Nonlinear Load Increase Factors" by Aldo McKay, Kirk Marchand, and Manuel Diaz", Pract. Period. Struct. Des. Constr., 21(2), 07016001. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000166
- Marjanishvili, S. and Agnew, E. (2006), "Comparison of various procedures for progressive collapse analysis", J. Perform. Constr. Fac., 20(4), 365-374. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365)
- Mashhadiali, N., Kheyroddin, A. and Zahiri-Hashemi, R. (2016), "Dynamic Increase Factor for Investigation of Progressive Collapse Potential in Tall Tube-Type Buildings", J. Perform. Constr. Fac., 30(6), 4016050. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000905
- Mirtaheri, M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Comp. Struct., Int. J., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357
- Qin, X., Wang, W., Chen, Y. and Bao, Y. (2016), "A special reinforcing technique to improve resistance of beam-to-tubular column connections for progressive collapse prevention", Eng. Struct., 117, 26-39. https://doi.org/10.1016/j.engstruct.2016.03.012
- Saberi, V., Gerami, M. and Kheyroddin, A. (2014), "Comparison of bolted end plate and T-stub connection sensitivity to component thickness", J. Constr. Steel. Res., 98, 134-145. https://doi.org/10.1016/j.jcsr.2014.02.012
- Tavakoli, H.R. and Kiakojouri, F. (2013), "Numerical study of progressive collapse in framed structures: A new approach for dynamic column removal", Int. J. Eng. Trans A: Basics, 26(7), 685-692.
- Tsai, M.H. (2010), "An analytical methodology for the dynamic amplification factor in progressive collapse evaluation of building structures", Mech. Res. Commun., 37(1), 61-66. https://doi.org/10.1016/j.mechrescom.2009.11.001
- Tsai, M.H. (2012), "Assessment of analytical load and dynamic increase factors for progressive collapse analysis of building frames", Adv. Struct. Eng., 15(1), 41-54. https://doi.org/10.1260/1369-4332.15.1.41
- Unified Facilities Criteria (2009), Design of Buildings to Resist Progressive Collapse; (UFC4-023-03), Department of Defense, USA.
- US General Services Administration (2013), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects; GSA.
- Wang, W., Fang, C., Qin, X. and Li, L. (2016), "Performance of practical beam-to-SHS column connections against progressive collapse", Eng. Struct., 106, 332-347. https://doi.org/10.1016/j.engstruct.2015.10.040
- Yang, B. and Tan, K.H. (2012), "Numerical analyses of steel beam-column joints subjected to catenary action", J. Constr. Steel Res., 70, 1-11. https://doi.org/10.1016/j.jcsr.2011.10.007
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a centralcolumn-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037
Cited by
- Component-based model for posttensioned steel connections against progressive collapse vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.481
- Machine learning applications for assessment of dynamic progressive collapse of steel moment frames vol.36, pp.None, 2022, https://doi.org/10.1016/j.istruc.2021.12.067