References
- Alibrandi, U., Alani, A.M. and Ricciardi, G. (2015), "A new sampling strategy for SVM-based response surface for structural reliability analysis", Probabil. Eng. Mech., 41, 1-12. https://doi.org/10.1016/j.probengmech.2015.04.001
- Averseng, J., Bouchair, A. and Chateauneuf, A. (2017), "Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints", Steel Compos. Struct., Int. J., 25(1), 45-55.
- Barzoki, A., Mosallaie, A., Ghorbanpour Arani, A., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Model., 36(1), 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093
- Bonstrom, H. and Corotis, R.B. (2014), "First-order reliability approach to quantify and improve building portfolio resilience", J. Struct. Eng., 142(8), p.C4014001.
- Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Guedes Soares, C. (2015), "Review and application of artificial neural networks models in reliability analysis of steel structures", Struct. Safe., 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002
- Der Kiureghian, A. and Dakessian, T. (1998), "Multiple design points in first and second-order reliability", Struct. Safe., 20(1), 37-49. https://doi.org/10.1016/S0167-4730(97)00026-X
- Dubourg, V., Sudret, B. and Bourinet, J.M. (2011), "Reliabilitybased design optimization using kriging surrogates and subset simulation", Struct. Multidiscipl. Optimiz., 44(5), 673-690. https://doi.org/10.1007/s00158-011-0653-8
- Duc, N.D., Hadavinia, H., Van Thu, P. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect threephase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017a), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundation", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017b), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
- Duc, N.D., Tran, Q.Q. and Nguyen, D.K. (2017c), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031
- Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation", Struct. Safe., 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002
- Echard, B., Gayton, N., Lemaire, M. and Relun, N. (2013), "A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models", Reliabil. Eng. Syst. Safe., 111, 232-240. https://doi.org/10.1016/j.ress.2012.10.008
- El Amine Ben Seghier, M., Keshtegar, B. and Bouali, E. (2018), "Reliability analysis of low, mid and high-grade strength corroded pipes based on plastic flow theory using adaptive nonlinear conjugate map", Eng. Fail. Anal., 90, 245-246. https://doi.org/10.1016/j.engfailanal.2018.03.029
- Ghorbanpour, A., Abdollahian, M. and Kolahchi, R. (2015), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Compos., 36(7), 1314-1324. https://doi.org/10.1002/pc.23036
- Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidiscipl. Optimiz., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y
- Goswami, S., Ghosh, S. and Chakraborty, S. (2016), "Re Reliability analysis of structures by iterative improved response surface method", Struct. Safe., 60, 56-66. https://doi.org/10.1016/j.strusafe.2016.02.002
- Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121.
- Hu, C. and Youn, B.D. (2011), "Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems", Struct. Multidiscipl. Optimiz., 43(3), 419-442. https://doi.org/10.1007/s00158-010-0568-9
- Jia, B., Yu, X.L. and Yan, Q.S. (2016), "A new sampling strategy for Kriging-based response surface method and its application in structural reliability", Adv. Struct. Eng., 20(4), 564-581.
- Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Methods Appl. Mech. Eng., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046
- Keshtegar, B. (2017), "Limited conjugate gradient method for structural reliability analysis", Eng. Comput., 33(3), 621-629. https://doi.org/10.1007/s00366-016-0493-7
- Keshtegar, B. (2018a), "Enriched FR conjugate search directions for robust and efficient structural reliability analysis", Eng. Comput., 34(1), 117-128. https://doi.org/10.1007/s00366-017-0524-z
- Keshtegar, B. (2018b), "Conjugate finite-step length method for efficient and robust structural reliability analysis", Struct. Eng. Mech., Int. J., 65(4), 415-422.
- Keshtegar, B. and Bagheri, M. (2018), "Fuzzy relaxed-finite step size method to enhance the instability of the fuzzy first-order reliability method using conjugate discrete map", Nonlinear Dyn., 91(3), 1443-1459. https://doi.org/10.1007/s11071-017-3957-4
- Keshtegar, B. and Chakraborty, S. (2018a), "An efficient -robust structural reliability method by adaptive finite-step length based on Armijo line search", Reliabil. Eng. Syst. Safe., 172, 195-206. https://doi.org/10.1016/j.ress.2017.12.014
- Keshtegar, B. and Chakraborty, S. (2018b), "A hybrid selfadaptive conjugate first order reliability method for robust structural reliability analysis", Appl. Math. Model., 53, 319-332. https://doi.org/10.1016/j.apm.2017.09.017
- Keshtegar, B. and Kisi, O. (2017), "M5 model tree and Monte Carlo simulation for efficient structural reliability analysis", Appl. Math. Model., 48, 899-910. https://doi.org/10.1016/j.apm.2017.02.047
- Keshtegar, B. and Meng, Z. (2017), "A hybrid relaxed first-order reliability method for efficient structural reliability analysis", Struct. Safe., 66, 84-93. https://doi.org/10.1016/j.strusafe.2017.02.005
- Keshtegar, B. and Miri, M. (2014), "Reliability analysis of corroded pipes using conjugate HL-RF algorithm based on average shear stress yield criterion", Eng. Fail. Anal., 46, 104-117. https://doi.org/10.1016/j.engfailanal.2014.08.005
- Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Lee, T.H. and Jung, J.J. (2008), "A sampling technique enhancing accuracy and efficiency of metamodel-based RBDO: Constraint boundary sampling", Comput. Struct., 86(13), 1463-1476. https://doi.org/10.1016/j.compstruc.2007.05.023
- Lee, I., Choi, K.K., Du, L. and Gorsich, D. (2008), "Dimension reduction method for reliability-based robust design optimization", Comput. Struct., 86(13-14), 1550-1562. https://doi.org/10.1016/j.compstruc.2007.05.020
- Li, C., Zhang, Y., Tu, W., Jun, C., Liang, H. and Yu, H. (2017), "Soft measurement of wood defects based on LDA feature fusion and compressed sensor images", J. Forest. Res., 28(6), 1285-1292. https://doi.org/10.1007/s11676-017-0395-6
- Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Safe., 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7
- Liu, Y.W. and Moses, F. (1994), "A sequential response surface method and its application in the reliability analysis of aircraft structural systems", Struct. Safe., 16(1-2), 39-46. https://doi.org/10.1016/0167-4730(94)00023-J
- Lu, Z.H., Zhao, Y.G., Yu, Z.W. and Chen, C. (2015), "Reliabilitybased assessment of American and European specifications for square CFT stub columns", Steel Compos. Struct., Int. J., 19(4), 811-827. https://doi.org/10.12989/scs.2015.19.4.811
- Lu, Z.H., Cai, C.H. and Zhao, Y.G. (2017), "Structural reliability analysis including correlated random variables based on thirdmoment transformation", J. Struct. Eng., 143(8), p.04017067. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001801
- Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first order reliability analysis", Struct. Multidiscipl. Optimiz., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z
- Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., Int. J., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931
- Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Song, M., Yang, J., Kitipornchai, S. and Zhu, W. (2017), "Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates", Int. J. Mech. Sci., 131-132, 345-355. https://doi.org/10.1016/j.ijmecsci.2017.07.017
- Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54(1), 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties", J. Therm. Stress., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928
- Van Thu, P. and Duc, N.D. (2016), "Non-linear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environment", Sci. Eng. Compos. Mater., 24(6), 951-962.
- Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a singlewalled carbon nanotube", Int. J. Solid. Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Yang, D. (2010), "Chaos control for numerical instability of first order reliability method", Commun. Nonlinear Sci. Numer. Simul., 15(10), 3131-3141. https://doi.org/10.1016/j.cnsns.2009.10.018
- Yang, H. and Yu, L. (2017), "Feature extraction of wood-hole defects using wavelet-based ultrasonic testing", J. Forest. Res., 28(2), 395-402. https://doi.org/10.1007/s11676-016-0297-z
- Zhao, Y.G. and Lu, Z.H. (2007), "Fourth-moment standardization for structural reliability assessment", J. Struct. Eng., 133(7), 916-924. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(916)
- Zhao, Y.G. and Ono, T. (2001), "Moment methods for structural reliability", Struct. Safe., 23(1), 47-75. https://doi.org/10.1016/S0167-4730(00)00027-8
- Zhou, W., Li, S., Jiang, L. and Huang, Z. (2015), "Distortional buckling calculation method of steel-concrete composite box beam in negative moment area", Steel Compos. Struct., Int. J., 19(5), 1203-1219. https://doi.org/10.12989/scs.2015.19.5.1203
- Zhuang, X. and Pan, R. (2012), "A sequential sampling strategy to improve reliability-based design optimization with implicit constraint functions", J. Mech. Des., 134(2), 021002. https://doi.org/10.1115/1.4005597
Cited by
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643