참고문헌
- Abramowicz, W. and Jones, N. (1984a), "Dynamic axial crushing of sqaure tubes", Int. J. Impact Eng., 2(2), 179-208. https://doi.org/10.1016/0734-743X(84)90005-8
- Abramowicz, W. and Jones, N. (1984b), "Dynamic axial crushing of circular tubes", Int. J. Impact Eng., 2(3), 263-281. https://doi.org/10.1016/0734-743X(84)90010-1
- Abramowicz, W. and Weirzbicki, T. (1988), "Axial crushing of foam filled columns", Int. J. Mech. Sci., 30(3-4), 263-271. https://doi.org/10.1016/0020-7403(88)90059-8
- Ahmad, Z. and Thambiratnam, D.P. (2009), "Dynamic computer simulation and energy absorption of foam filled conical tubes under axial impact loading", Int. J. Comput. Struct., 87(3-4), 186-197. https://doi.org/10.1016/j.compstruc.2008.10.003
- Alaghamdi, A. (2001), "Collapsible impact energy absorbers: an overview", Thin-wall. Struct., 39(2), 189-213. https://doi.org/10.1016/S0263-8231(00)00048-3
- Baaskaran, N., Ponappa, K. and Shankar, S. (2017), "Quasi-Static crushing and energy absorption characteristics of thin-walled cylinders with geometric discontinuities of various aspect ratios", Latin Am. J. Solids Struct., 14(9), 1767-1787. https://doi.org/10.1590/1679-78253866
- Borvik, T., Hopperstad, O.S. and Reyes, M. (2003), "Empty and foam filled circular aluminium tubes subjected to axial and oblique quasistatic loading", Int. J. Crashworth., 8(5), 481-494. https://doi.org/10.1533/ijcr.2003.0254
- Chung, S., Nurick, N. and Starke, R. (2008), "The energy absorption characteristics of double cell tubular profiles", Thin-Wall. Struct., 5(4), 289-317.
- Duffy, J. (1979), "Testing techniques and material behavior at high rates of strain", Int. J. Hardening, 47, 1-15.
- Fan, Z., Lu, G. and Liu, K. (2013), "Quasistatic axial compression of thin walled tubes with different cross sectional shapes" , Int. J. Eng. Struct., 55, 80-89.
- Fyllingen, O., Hopperstad, O.S. and Hanssen, G. (2010), "Modelling of tubes subjected to axial crushing", Thin-Wall. Struct., 48(2), 134-142. https://doi.org/10.1016/j.tws.2009.08.007
- Guillow, S.R., Lu, G. and Grzebieta, R.H. (2001), "Quasistatic axial compression of thin walled circular aluminium tubes", Int. J. Mech. Sci., 43(9), 2103-2123. https://doi.org/10.1016/S0020-7403(01)00031-5
- Han, D.C. and Park, S.H. (1999), "Collapse behavior of square thin walled columns subjected to oblique loads", Thin-Wall. Struct., 35(3), 167-184. https://doi.org/10.1016/S0263-8231(99)00022-1
- Hou, S.J., Li, S. and Long, Y. (2007), "Design optimization of regular hexagonal thin walled columns with crashworthiness criteria", Int. J. Finite Elem. Anal. Des., 43(6-7), 555-565. https://doi.org/10.1016/j.finel.2006.12.008
- Huang, M.Y., Tai, Y.S. and Hu, H. (2010), "Dynamic characteristics of high strength steel cylinders with elliptical geometric discontinuities", Int. J. Theor. Appl. Fract. Mech., 54(1), 44-53. https://doi.org/10.1016/j.tafmec.2010.06.014
- Jones, N. (1989), Structural Impact, Cambridge University Press, Cambridge, UK.
- Karagiozova, D. and Jones, N. (2004), "Dynamic buckling of elastic plastic square tubes under axial impact-II: structural response", Int. J. Impact Eng., 30(2), 167-192. https://doi.org/10.1016/S0734-743X(03)00062-9
- Karbhari, V.M. and Chaoling, S. (2003), "Energy absorbing characteristics of circular frusta", Int. J. Impact Eng., 8, 471-479.
- Krauss, C.A. and Laananen, D.H. (1994), "A parametric study of crush initiators for a thin walled tube", Int. J. Vehicle Des., 15(3-5), 384-401.
- Langseth, M. and Hopperstad, O.S. (1996), "Static and dynamic axial crushing of square thin walled aluminium extrusions", Int. J. Impact Eng., 18(7-8), 949-968. https://doi.org/10.1016/S0734-743X(96)00025-5
- Langseth, M., Hopperstad, O.S. and Hanssen, A.G. (1998), "Crash behavior of thin walled aluminum members", Thin-Wall. Struct., 32(1-3), 127-150. https://doi.org/10.1016/S0263-8231(98)00030-5
- Mahdi, E. and Hamouda, A.M.S. (2012), "Energy absorption capability of composite hexagonal ring system", Int. J. Mater. Des., 34, 201-210.
- Mamalis, A.G., Manolakos, G.A. and Demosthenous, G.A. (1991), "Axial plastic collapse of thin bimaterial tubes as energy dissipating systems", Int. J. Impact Eng., 11(2), 185-196. https://doi.org/10.1016/0734-743X(91)90005-Z
- Nagel, G.M. and Thambiratnam, D.P. (2005), "Computer simulation and energy absorption of tapered thin walled rectangular tubes", Thin-Wall. Struct., 43(8), 1225-1242. https://doi.org/10.1016/j.tws.2005.03.008
- Nagel, G.M. and Thambiratnam, D.P. (2006), "Dynamic simulation and energy absorption of tapered thin walled tubes under oblique impact loading", Int. J. Impact Eng., 32(10), 1595-1620. https://doi.org/10.1016/j.ijimpeng.2005.01.002
- Peixinho, N. and Pinho, A. (2007), "Study of viscoplasticity models for the impact behavior of high strength steels", Transactions of ASME, 2(2), 114-123.
- Qi, C., Yang, S. and Dong, F.L. (2012), "Crushing analysis and multi-objective crashworthiness optimization of tapered square tubes under oblique impact loading", Thin-Wall. Struct., 59, 103-119. https://doi.org/10.1016/j.tws.2012.05.008
- Reyes, A. and Langseth, M. (2002), "Crashworthiness of aluminium extrusions subjected to oblique loading: experiments and numerical analysis", Int. J. Mech. Sci., 44(9), 1965-1984. https://doi.org/10.1016/S0020-7403(02)00050-4
- Santosa, S.P., Wierzbicki, T., Hanssen, A.G. and Langseth, M. (2000), "Experimental and numerical studies of foam filled sections", Int. J. Impact Eng., 24(5), 509-534. https://doi.org/10.1016/S0734-743X(99)00036-6
- Tai, Y.S., Huang, M.Y. and Hu, H.T. (2010), "Axial compression and energy absorption characteristics of high strength thin walled cylinders under impact load", Int. J. Theore. Appl. Fract. Mech., 53, 1-8. https://doi.org/10.1016/j.tafmec.2009.12.001
- Tarlochan, F. and Samer, F. (2013), "Design of thin walled structures for energy absorption applications: Design for crash injuries mitigation using magnesium alloy", Int. J. Res. Eng., 19, 2321-2329.
- Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S. and Khalid, K. (2013), "Design of thin walled structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces", Thin-Wall. Struct., 71, 7-17. https://doi.org/10.1016/j.tws.2013.04.003
- Thornton, P.H., Mahmood, H.F. and Magee, C.L. (1983), "Energy absorption of structural collapse", Structural Crashworthiness, Butterworths, London, England.
- Vahdatazad, N. and Ebrahimi, S. (2016), "Energy absorption characteristics of diamond core columns under axial crushing loads", Steel Compos. Struct., Int. J., 21(3), 605-628. https://doi.org/10.12989/scs.2016.21.3.605
- Vinayagar, K. and Kumar, A.S. (2017), "Multi-response optimization of crashworthiness parameters of bi-tubular structures", Steel Compos. Struct., Int. J., 23(1), 31-40. https://doi.org/10.12989/scs.2017.23.1.031
- Witteman, W.J. (1999), "Improved Vehicle crashworthiness design by control of the energy absorption for different collision situation", Thesis; Eindhoven University of Technology, Netherlands, 41 p.
- Yu, H., Gu, Y. and Lai, X. (2009), "Rate dependent behavior and constitutive model of DP600 steel at strain rate from 10-4 to 103s-1", Int. J. Mater. Des., 30(7), 2501-2505.
피인용 문헌
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.033
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263