References
- Adam, C. and Jager, C. (2012a), "Seismic collapse capacity of basic inelastic structures vulnerable to the P-delta effect", Earthq. Eng. Struct. Dyn., 41(4), 775-793. https://doi.org/10.1002/eqe.1157
- Adam, C. and Jager, C. (2012b), "Simplified collapse capacity assessment of earthquake excited regular frame structures vulnerable to P-delta", Eng. Struct., 44, 159-173. https://doi.org/10.1016/j.engstruct.2012.05.036
- AISC (2010), Seismic provisions for structural steel buildings, Chicago, USA.
- Akiyama, H. (2002), "Collapse modes of structures under strong motions of earthquakes", Annals Geophys., 45(6), 791-798.
- Anagnostides, G., Hargreaves, A.C. and Wyatt, T.A. (1989), "Development and applications of energy absorption devices based on friction", J. Constr. Steel Res., 13(4), 317-336. https://doi.org/10.1016/0143-974X(89)90034-5
- Bagheri, S., Barghian, M., Saieri, F. and Farzinfar, A. (2015), "Ushaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper", Structures, 3, 163-171. https://doi.org/10.1016/j.istruc.2015.04.003
- Baiguera, M., Vasdravellis, G. and Karavasilis, T.L. (2016), "Dual seismic-resistant steel frame with high post-yield stiffness energy-dissipative braces for residual drift reduction", J. Constr. Steel Res., 122, 198-212. https://doi.org/10.1016/j.jcsr.2016.03.019
- Bernal, D. (1987), "Amplification factors for inelastic dynamic p-Δ effects in earthquake analysis", Earthq. Eng. Struct. Dyn., 15(5), 635-651. https://doi.org/10.1002/eqe.4290150508
- Bruneau, M., Uang, C.M. and Sabelly, R. (1998), Ductile Design of Steel Structures, (2nd Edition), McGraw-Hill, New York, USA.
- Cassianola, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016) "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., Int. J., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479
- Erochko, J., Christopoulos, C. and Tremblay, R. (2014), "Design, testing, and detailed component modeling of a high-capacity self-centering energy-dissipative brace", J. Struct. Eng., 141(8), 04014193. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001166
- Hou, X. and Tagawa, H. (2008), "Wire-rope bracing system with elasto-plastic dampers for seismic response reduction of steel frames", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Hou, X. and Tagawa, H. (2009), "Displacement-restraint bracing for seismic retrofit of steel moment frames", J. Constr. Steel Res., 65(5), 1096-1104. https://doi.org/10.1016/j.jcsr.2008.11.008
- Husid, R. (1967), "Gravity effects on the earthquake response of yielding structures", Ph.D. Dissertation; California Institute of Technology.
- Ibarra, L.F. and Krawinkler, H. (2005), Global collapse of frame structures under seismic excitations; John A. Blume Earthquake Engineering Center, Report No. 152, Department of Civil and Environmental Engineering, Stanford University, CA, USA.
- Kanvinde, A.M. (2003), "Methods to evaluate the dynamic stability of structures-shake table tests and nonlinear dynamic analyses", Proceedings of the EERI Meeting, Portland, OR, USA, February.
- Kia, M. and Banazadeh, M. (2016), "Closed-form fragility analysis of the steel moment resisting frames", Steel Compos. Struct., Int. J., 21(1), 93-107. https://doi.org/10.12989/scs.2016.21.1.093
- Kurata, M., Leon, R.T. and DesRoches, R. (2011), "Rapid seismic rehabilitation strategy: concept and testing of cable bracing with couples resisting damper", J. Struct. Eng., 138(3), 354-362.
- Miranda, E. and Akkar, S.D. (2003), "Dynamic instability of simple structural systems", J. Struct. Eng., 129(2), 1722-1727. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1722)
- Mousavi, A. and Zahrai, M. (2016), "Contribution of pre-slacked cable braces to dynamic stability of non-ductile frames; an analytical study", Eng. Struct., 117, 305-320. https://doi.org/10.1016/j.engstruct.2016.03.013
- Mousavi, A., Zahrai, M. and Saatcioglu, M. (2015), "Toward buckling free tension-only braces using slack free connections", J. Constr. Steel Res., 115, 329-345. https://doi.org/10.1016/j.jcsr.2015.08.048
- Mualla, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X
- Razavi, M. and Sheidayii, M.R. (2012), "Seismic performance of cable zipper-braced frames", J. Constr. Steel Res., 74, 49-57. https://doi.org/10.1016/j.jcsr.2012.02.007
- Renzi, E., Perno, S., Pantanella, S. and Ciampi, V. (2007), "Design, test and analysis of a light-weight dissipative bracing system for seismic protection of structures", Earthq. Eng. Struct. Dyn., 36(4), 519-539. https://doi.org/10.1002/eqe.641
- Ruo-qiang, F., Bin, Y. and Jihong, Y. (2013), "Stability of lamella cylinder cable-braced grid shells", J. Constr. Steel Res., 88, 220-230. https://doi.org/10.1016/j.jcsr.2013.05.019
- Tagawa, H. and Hou, X. (2007), "Seismic retrofit of ductile moment resisting frames using wire-rope bracing", Proceedings of the 8th Pacific Conference on Earthquake Engineering, Singapore, December.
- Tamai, H. and Takamatsu, T. (2005), "Cyclic loading tests on a non-compression brace considering performance-based seismic design", J. Constr. Steel Res., 61(9), 1301-1317. https://doi.org/10.1016/j.jcsr.2005.01.009
Cited by
- Experimental and numerical investigation of wire rope devices in base isolation systems vol.18, pp.3, 2018, https://doi.org/10.12989/eas.2020.18.3.275