References
- Aggelis, D.G., Mpalaskas, A.C. and Matikas, T.E. (2013), "Acoustic signature of different fracture modes in marble and cementitious materials under flexural load", Mech. Res. Commun., 47, 39-43. https://doi.org/10.1016/j.mechrescom.2012.11.007
- Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater., 25, 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
- Altindag, R. (2000), "The role of rock brittleness on analysis of percussive drilling performance", Proceedings of the 5th National Rock Mech. Symposium, Turkey. (in Turkish)
- Andreev, G.E. (1995), Brittle Failure of Rock Materials: Test Results and Constitutive Models, Rotterdam, Brookfield, AA Balkema.
- Antonaci, P., Bocca, P. and Masera, D. (2012), "Fatigue crack propagation monitoring by Acoustic Emission signal analysis", Eng. Fract. Mech., 81, 26-32 https://doi.org/10.1016/j.engfracmech.2011.09.017
- Batzle, M., Simmons, G. and Siefried, R. (1980), "Micro-crack closure in rocks under stress: direct observation", J. Geophys. Res., 85(B12), 7072-90. https://doi.org/10.1029/JB085iB12p07072
- Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock. Part II-experimental studies", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4(4), 407-23. https://doi.org/10.1016/0148-9062(67)90031-9
- Blindheim, O.T. and Bruland, A. (1998), "Boreability testing. Norwegian TBM tunnelling 30 years of Experience with TBMs in Norwegian Tunnelling", Norwegian Soil Rock Eng. Assoc., 11, 29-34.
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock type materials under uniaxial and biaxial", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Cai, M. and Liu, D. (2009), "Study of failure mechanisms of rock under compressive-shear loading using real-time laser holography", Int. J. Rock Mech. Min. Sci., 46, 59-68 https://doi.org/10.1016/j.ijrmms.2008.03.010
- Cai, M., He, M. and Liu, D. (2002), Rock Mechanics and Engineering, Science Press, Beijing.
- Chen, Y.L., Ni, J., Shao, W., Zhou, Y.C., Javadi, A. and Azzam, R. (2011), "Coalescence of fractures under uni-axial compression and fatigue loading", Rock Mech. Rock Eng., 45(2), 241-249. https://doi.org/10.1007/s00603-011-0186-x
- Fakhimi, A. and Hemami, B. (2015), "Axial splitting of rocks under uniaxial compression", Int. J. Rock Mech. Min. Sci., 79, 124-134. https://doi.org/10.1016/j.ijrmms.2015.08.013
- Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8
- Gramberg, J. (1989), A Non-conventional View on Rock Mechanics, Balkema, Rotterdam.
- Gutenberg, B. and Richte, C. (1949), Seismicity of the Earth and Associated Phenomena, Princeton University Press.
- Hallbauer, D., Wagner, H. and Cook, N. (1973), "Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(6), 713-26. https://doi.org/10.1016/0148-9062(73)90015-6
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation under compression", Int. J. Fract. Mech., 1, 137-55.
- Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1, 389-392.
- Hudyma, N., Avar, B.B. and Karakouzian, M. (2004), "Compressive strength and failure modes of lithophysae-rich Topopah Spring Tuff specimens and analog models containing cavities", Eng. Geol., 73(1), 179-190. https://doi.org/10.1016/j.enggeo.2004.01.003
- Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
- ISRM (1981), Suggested Methods: Rock Characterization, Testing and Monitoring, Ed. Brown, E.T., Pergamon, Oxford.
- Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007), Fundamentals of Rock Mechanics, 4th Edition, Blackwell, Oxford.
- Kurz, J.H., Finck, F., Grosse, C.U. and Reinhardt, H.W. (2005), "Stress drop and stress redistribution in concrete quantified over time by the "b-value" analysis", Struct. Hlth. Monit, 5, 69-8.
- Lee, S.E. and Jeong, G.C. (2015), "Numerical analysis on microdamage in bisphere model of granitic rock", Geosci. J., 19(1), 135-144. https://doi.org/10.1007/s12303-014-0055-1
- Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-Cracked marble", Int. J. Solid. Struct., 42, 2505-16. https://doi.org/10.1016/j.ijsolstr.2004.09.033
- Meng, F., Zhou, H., Zhang, C., Xu, R. and Lu, J. (2015), "Evaluation methodology of brittleness of rock based on postpeak stress-strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
- Moore, D.E. and Lockner, D.A. (1995), "The role of microcracking in shearfracture propagation in granite", J. Struct. Geol., 17, 95-114 https://doi.org/10.1016/0191-8141(94)E0018-T
- Mughieda, O.S. and Khawaldeh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geolog. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0
- Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/CAC.2017.20.2.155
- Nasseri, M.H.B., Mohanty, B. and Young, R.P. (2006), "Fracture toughness measurements and acoustic emission activity in brittle rocks", Pure Appl. Geophys., 163, 917-945 https://doi.org/10.1007/s00024-006-0064-8
- Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, 19(4), 429-434. https://doi.org/10.12989/cac.2017.19.4.429
- Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603-013-0486-4
- Nejati, H.R. and Moosavi, S.A. (2017), "A new brittleness index for estimation of rock fracture toughness", J. Min. Environ., 8(1), 83-91
- Pan, P.Z., Feng, X.T. and Hudson, J.A. (2012), "The influence of the intermediate principal stress on rock failure behaviour: a numerical study", Eng. Geol., 124, 109-118. https://doi.org/10.1016/j.enggeo.2011.10.008
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829 https://doi.org/10.1016/j.ijrmms.2009.02.006
- Peng, G., Nakamura, S., Zhu, X., Wu, Q. and Wang, H. (2017), "An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation", Comput. Concrete, 20(5), 605-616. https://doi.org/10.12989/CAC.2017.20.5.605
- Protodyakonov, M.M. (1963), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium Rock Mechanics, University of Minnesota, 103-118.
- Pu, C.Z. and Ping, C.A.O. (2012), "Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Tran. Nonfer. Metal. Soc. China, 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
- Ramulu, M. and Kobayashi, A.S. (1985) "Mechanics of crack curving and branching-a dynamic fracture analysis", Int. J. Fract., 27, 187-201. https://doi.org/10.1007/BF00017967
- Ren, X., Chen, J., Li, J., Slawson, T.R. and Roth, M.J. (2011). "Micro-cracks informed damage models for brittle solids", Int. J. Solid. Struct., 48, 1560-1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
- Shah, S.G. and Kishen, J.M.C. (2012), "Use of acoustic emissions in flexural fatigue crack growth studies on concrete", Eng. Fract. Mech., 87, 36-47. https://doi.org/10.1016/j.engfracmech.2012.03.001
- Shao, S., Ranjith, P.G., Wasantha, P.L.P. and Chen, B.K. (2015), "Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy", Geotherm., 54, 96-108. https://doi.org/10.1016/j.geothermics.2014.11.005
- She, W., Zhao, G., Yang, G., Jiang, J., Cao, X. and Du, Y. (2016), "Numerical analysis of the thermal behaviors of cellular concrete", Comput. Concrete, 18(3), 319-336. https://doi.org/10.12989/cac.2016.18.3.319
- Shen, B. (1995), "The mechanism of fracture coalescence in compression-experimental study and numerical simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R
- Sprunt, E. and Brace, W. (1974), "Direct observation of microcavities in crystalline rocks", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11(4),139-50. https://doi.org/10.1016/0148-9062(74)92874-5
- Szwedzicki, T. (2007), "A hypothesis on modes of failure of rock samples tested in uniaxial compression", Rock Mech. Rock Eng., 40(1), 97-104. https://doi.org/10.1007/s00603-006-0096-5
- Szwedzicki, T. and Shamu, W. (1999), "The effect of material discontinuities on strength of rocksamples", Proc. Austral. Inst. Min. Metall., 304(1), 23-28
- Wawersik, W. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7, 561-75. https://doi.org/10.1016/0148-9062(70)90007-0
- Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
- Young, R.P. and Martin, C.D. (1993), "Potential role of acoustic emission/ microseismicity investigations in the site characterization and performance monitoring of nuclear waste repositories", Int. J. Rock Mech. Min. Sci., 30, 797-803 https://doi.org/10.1016/0148-9062(93)90025-9
- Zhang, C., Zhou, W., Ma, G., Hu, C. and Li, S. (2015), "A mesoscale approach to modeling thermal cracking of concrete induced by water-cooling pipes", Comput. Concrete, 15, 485-501. https://doi.org/10.12989/cac.2015.15.4.485
- Zhu, W.C. and Tang, C.A. (2006) "Numerical simulation of Brazilian disk rock failure under static and dynamic loading", Int. J. Rock Mech. Min. Sci., 43, 236-252. https://doi.org/10.1016/j.ijrmms.2005.06.008
- Zietlow, W.K. and Labuz, J.F. (1998), "Measurement of the intrinsic process zone in rock using acoustic emission", Int. J. R. Mech. Min. Sci., 3, 291-299.
Cited by
- Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression vol.79, pp.3, 2020, https://doi.org/10.1007/s10064-019-01638-4
- The Influence of Regional Freeze-Thaw Cycles on Loess Landslides: Analysis of Strength Deterioration of Loess with Changes in Pore Structure vol.12, pp.11, 2020, https://doi.org/10.3390/w12113047