Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", Int. J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010
- Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006
- Barber R.B. (1973), Steel Rod/Concrete Slab Impact Test (Experimental Simulation), Bechtel Corporation.
- Beppu, M., Miwa, K., Itoh, M., Katayama, M. and Ohno, T. (2008), "Damage evaluation of concrete plates by high-velocity impact", Int. J. Impact Eng., 35(12), 1419-1426. https://doi.org/10.1016/j.ijimpeng.2008.07.021
- Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rates", Mater. Struct., 24(6), 425-450. https://doi.org/10.1007/BF02472016
- Drake, J.L., Twisdale, L., Frank, R., Dass, W., Rochefort, M., Walker, R., ... and Sues, R. (1989), Protective Construction Design Manual, ESL-TR-87-57, Air Force Engineering and Services, Tyndall Air Force Base.
- Goldsmith, W., Polivka, M. and Yang, T. (1966), "Dynamic behavior of concrete", Exper. Mech., 6(2), 65-79. https://doi.org/10.1007/BF02326224
- ISRM and ISRM (1978), "Suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Ab., 15(15), 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
- Jankov Z.D., Shanahan, J.A. and White, M.P. (1976), "Missile tests of quarter-scale reinforced concrete barriers, A symposium on tornadoes, assessment of knowledge and implications for man", Texas Tech University, Lubbock, TX.
- Kaikea, A., Achoura, D., Duplan, F. and Rizzuti, L. (2014), "Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete", Mater. Des., 63, 493-499. https://doi.org/10.1016/j.matdes.2014.06.066
- Kandasamy, S. and Akila, P. (2015), "Experimental analysis and modeling of steel fiber reinforced scc using central composite design", Comput. Concrete, 15(2), 215-229. https://doi.org/10.12989/cac.2015.15.2.215
- Lan, S., Lok, T.S. and Heng, L. (2005), "Composite structural panels subjected to explosive loading", Constr. Build. Mater., 19(5), 387-395. https://doi.org/10.1016/j.conbuildmat.2004.07.021
- Lee, D.H., Hwang, J.H., Ju, H. and Kang, S.K. (2014), "Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to shear", Comput. Concrete, 13(1), 49-70. https://doi.org/10.12989/cac.2014.13.1.049
- Magnusson, J. and Student, P.D. (2007), "Fibre reinforced concrete beams subjected to air blast loading", Int. J. Nordic Concrete Res., 35, 18-34.
- Mao, L., Barnett, S., Begg, D., Schleyer, G. and Wight, G. (2014), "Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading", Int. J. Impact Eng., 64(64), 91-100. https://doi.org/10.1016/j.ijimpeng.2013.10.003
- Ohtsu, M., Uddin, F.A.K.M., Tong, W. and Murakami, K. (2007), "Dynamics of spall failure in fiber reinforced concrete due to blasting", Constr. Build. Mater., 21(3), 511-518. https://doi.org/10.1016/j.conbuildmat.2006.04.007
- Perumal, R. (2014), "Performance and modeling of highperformance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255
- Razaqpur, A.G., Tolba, A. and Contestabile, E. (2007), "Blast loading response of reinforced concrete panels reinforced with externally bonded gfrp laminates", Compos. Part B, 38(5-6), 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016
- Reed, M., Lokuge, W. and Karunasena, W. (2014), "Fiberreinforced geopolymer concrete with ambient curing for in situ applications", J. Mater. Sci., 49(12), 4297-4304. https://doi.org/10.1007/s10853-014-8125-3
- Shah, A.A. and Ribakov, Y. (2011), "Recent trends in steel fibered high-strength concrete", Mater. Des., 32(8-9), 4122-4151. https://doi.org/10.1016/j.matdes.2011.03.030
- Shah, S.P. (1995), Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi, Wiley.
- Wang, M.Y., Deng, H.J. and Qian, Q.H. (2005), "Study on problems of near cavity of penetration and explosion in rock", Chin. J. Rock Mech. Eng., 11(4), 609-616.
- Wang, N.Q. (1998), Calculation Principle and Design of Protective Structure, PLA University of Science and Technology, Nanjing.
- Wille, K., Xu, M., El-Tawil, S. and Naaman, A.E. (2016), "Dynamic impact factors of strain hardening uhp-frc under direct tensile loading at low strain rates", Mater. Struct., 49(4), 1351-1365. https://doi.org/10.1617/s11527-015-0581-y
- Xu, S. and Reinhardt, H.W. (1999), "Determination of double-k, criterion for crack propagation in quasi-brittle fracture, part ii: analytical evaluating and practical measuring methods for threepoint bending notched beams", Int. J. Fract., 98(2), 151-177. https://doi.org/10.1023/A:1018740728458
- Yusof, M.A., Norazman, N., Ariffin, A., Zain, F.M., Risby, R. and Ng, C.P. (2011), "Normal strength steel fiber reinforced concrete subjected to explosive loading", Int. J. Sustain. Constr. Eng. Technol., 1(2), 127-136.
- Zhang, X.X., Ruiz, G. and Elazim, A.M.A. (2014), "Loading rate effect on crack velocities in steel fiber-reinforced concrete", Int. J. Impact Eng., 76, 60-66.
- Zhang, X.X., Yu, R.C., Ruiz, G., Tarifa, M. and Camara, M.A. (2010), "Effect of loading rate on crack velocities in hsc", Int. J. Impact Eng., 37(4), 359-370. https://doi.org/10.1016/j.ijimpeng.2009.10.002
Cited by
- Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.533