참고문헌
- Aissaoui, N. and Matallah, M. (2017), "A mesoscale investigation on the size effect of the fracture characteristics in concrete", Int. J. GEOMATE, 12(32), 126-133.
- Akbardoost, J. and Rastin, A. (2015), "Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading", Theor. Appl. Fract. Mech., 76, 75-90. https://doi.org/10.1016/j.tafmec.2015.01.004
- Alyhya, W.S., Abo Dhaheer, M.S., Al-Rubaye, M.M. and Karihaloo, B.L. (2016), "Influence of mix composition and strength on the fracture properties of self-compacting concrete", Constr. Build. Mater, 110, 312-322. https://doi.org/10.1016/j.conbuildmat.2016.02.037
- Ayatollahi, M.R. and Akbardoost, J. (2012), "Size effects on fracture toughness of quasi-brittle materials-A new approach", Eng. Fract. Mech., 92, 89-100. https://doi.org/10.1016/j.engfracmech.2012.06.005
- Ayatollahi, M.R. and Akbardoost, J. (2013), "Size and geometry effects on rock fracture toughness: Mode I fracture", Rock Mech. Rock Eng., 47(2), 677-687. https://doi.org/10.1007/s00603-013-0430-7
- Ayatollahi, M.R. and Akbardoost, J. (2013), "Size effects in mode II brittle fracture of rocks", Eng. Fract. Mech., 112-113, 165-180. https://doi.org/10.1016/j.engfracmech.2013.10.011
- Ayatollahi, M.R. and Nejati, M. (2011), "Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method", Int. J. Mech. Sci., 53(3), 164-177. https://doi.org/10.1016/j.ijmecsci.2010.12.005
- Bazant, Z. and Pfeiffer, P. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Mater. J., 84(6), 463-480.
- Bazant, Z.P. (1984), "Size effect in blunt fracture: concrete, rock, metal", J. Eng. Mech., 110(4), 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
- Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cement Concrete Res., 32, 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
- Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent r-curves", Int. J. Rock Mech. Min. Sci., 28, 43-51. https://doi.org/10.1016/0148-9062(91)93232-U
- Bazant, Z.P. and Kazemi, M.T. (1990), "Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete", Int. J. Fract., 44, 111-131. https://doi.org/10.1007/BF00047063
- Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Nonlinear fracture properties from size effect tests", J. Struct. Eng., 112.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-177.
- Bazant, Z.P. and Planas, J. (1998), Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials, CRC Press
- Bazant, Z.P. and Yu, Q. (2009), "Universal size effect law and effect of crack depth on quasi-brittle structure strength", J. Eng. Mech., 135(2), 78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78)
- Berto, F., Ayatollahi, M.R., Vantadori, S. and Carpinteri, A. (2017), "Review of the Influence of non-singular higher order terms on the stress field of thin welded lap joints and small inclined cracks in plates", Frattura ed Integrita Strutturale, 41, 260-268.
- Berto, F., Kotousov, A., Lazzarin, P. and Pegorin, F. (2013), "On a coupled mode at sharp notches subjected to anti-plane loading", Eur. J. Mech., A/Solid., 38, 70-78. https://doi.org/10.1016/j.euromechsol.2012.09.007
- Berto, F. and Lazzarin, P. (2010), "On higher order terms in the crack tip stress field", Int. J. Fract., 161(2), 221-226. https://doi.org/10.1007/s10704-010-9443-3
- Berto, F. and Lazzarin, P. (2013), "Multiparametric full-field representations of the in-plane stress fields ahead of cracked components under mixed mode loading", Int. J. Fatig., 46, 16-26. https://doi.org/10.1016/j.ijfatigue.2011.12.004
- Berto, F., Lazzarin, P. and Ayatollahi, M.R. (2013), "Recent Developments in Brittle and Quasi-Brittle Failure Assessment of Graphite by Means of SED", Key Eng. Mater., 577-578, 25-28. https://doi.org/10.4028/www.scientific.net/KEM.577-578.25
- Berto, F., Lazzarin, P. and Kotousov, A. (2011), "On higher order terms and out-of-plane singular mode", Mech. Mater., 43(6), 332-341. https://doi.org/10.1016/j.mechmat.2011.03.004
- Cedolin, L. and Cusatis, G. (2008), "Identification of concrete fracture parameters through size effect experiments", Cement Concrete Compos., 30(9), 788-797. https://doi.org/10.1016/j.cemconcomp.2008.05.007
- Cendon, D.A., Jin, N., Liu, Y., Berto, F. and Elices, M. (2017), "Numerical assessment of gray cast iron notched specimens by using a triaxiality-dependent cohesive zone model", Theor. Appl. Fract. Mech., 90, 259-267. https://doi.org/10.1016/j.tafmec.2017.06.001
- Cifuentes, H. and Karihaloo, B.L. (2013), "Determination of sizeindependent specific fracture energy of normal-and highstrength self-compacting concrete from wedge splitting tests", Constr. Build. Mater, 48, 548-553. https://doi.org/10.1016/j.conbuildmat.2013.07.062
- Coleman, T.F. and Li, Y. (1992), "On the convergence of interiorreflective Newton methods for nonlinear minimization subject to bounds", Math. Program., 67(1), 189-224. https://doi.org/10.1007/BF01582221
- Coleman, T.F. and Li, Y. (1996), "An interior trust region approach for nonlinear minimization subject to bounds", SIAM J. Optim., 6(2), 418-445. https://doi.org/10.1137/0806023
- Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76(14), 2163-2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
- Duan, K. and Hu, X. (2004), Scaling of Specimen Boundary Effect on Quasi-Brittle Fracture, Brisbane, Australia.
- Duan, K., Hu, X. and Wittmann, F.H. (2003), "Boundary effect on concrete fracture and non-constant fracture energy distribution", Eng. Fract. Mech., 70(16), 2257-2268. https://doi.org/10.1016/S0013-7944(02)00223-0
- Duan, K., Hu, X. and Wittmann, F.H. (2006), "Scaling of quasibrittle fracture: Boundary and size effect", Mech. Mater., 38(1-2), 128-141. https://doi.org/10.1016/j.mechmat.2005.05.016
- Duan, K., Hu, X. and Wittmann, F.H. (2007), "Size effect on specific fracture energy of concrete", Eng. Fract. Mech., 74(1-2), 87-96. https://doi.org/10.1016/j.engfracmech.2006.01.031
- He, Z., Kotousov, A., Berto, F. and Branco, R. (2016), "A brief review of recent three-dimensional studies of brittle fracture", Phys. Mesomech., 19(1), 6-20. https://doi.org/10.1134/S1029959916010021
- Heydari-Meybodi, M., Ayatollahi, M.R., Dehghany, M. and Berto, F. (2017), "Mixed-mode (I/II) failure assessment of rubber materials using the effective stretch criterion", Theor. Appl. Fract. Mech., 91, 126-133. https://doi.org/10.1016/j.tafmec.2017.05.001
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fract., 187(1), 133-143. https://doi.org/10.1007/s10704-013-9926-0
- Hoover, C.G. and Bazant, Z.P. (2014), "Comparison of the huduan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests", J. Eng. Mech., 140(3), 480-486. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000632
- Hoover, C.G. and Bazant, Z.P. (2014), "Universal size-shape effect law based on comprehensive concrete fracture tests", J. Eng. Mech., 140(3), 473-479. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000627
- Hoover, C.G. and P. Bazant, Z. (2013), "Comprehensive concrete fracture tests: Size effects of Types 1 & 2, crack length effect and postpeak", Eng. Fract. Mech., 110, 281-289. https://doi.org/10.1016/j.engfracmech.2013.08.008
- Hoover, C G., Bazant, Z.P., Vorel, J., Wendner, R. and Hubler, M.H. (2013), "Comprehensive concrete fracture tests:Description and results", Eng. Fract. Mech., 114, 92-103. https://doi.org/10.1016/j.engfracmech.2013.08.007
- Hu, X. and Duan, K. (2004), "Influence of fracture process zone height on fracture energy of concrete", Cement Concrete Res., 34(8), 1321-1330. https://doi.org/10.1016/j.cemconres.2003.12.027
- Hu, X. and Duan, K. (2007), "Size effect: Influence of proximity of fracture process zone to specimen boundary", Eng. Fract. Mech., 74(7), 1093-1100. https://doi.org/10.1016/j.engfracmech.2006.12.009
- Hu, X. and Duan, K. (2009), "Size effect and quasi-brittle fracture: the role of FPZ", Int. J. Fract., 154(1-2), 3-14. https://doi.org/10.1007/s10704-008-9290-7
- Hu, X., Guan, J., Wang, Y., Keating, A. and Yang, S. (2017), "Comparison of boundary and size effect models based on new developments", Eng. Fract. Mech., 175, 146-167. https://doi.org/10.1016/j.engfracmech.2017.02.005
- Duan, K., Hu, X.Z. and Wittmann, F.H. (2003), "Size effect on fracture resistance and fracture energy of concrete", Mater. Struct., 36(2), 74-80. https://doi.org/10.1007/BF02479520
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Effects of maximum aggregate size on fracture behaviors of selfcompacting lightweight concrete.", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168 Part A, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011
- Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stressbased approach", Mater. Today Commun., 13, 36-45. https://doi.org/10.1016/j.mtcomm.2017.08.002
- Karihaloo, B.L. (1999), "Size effect in shallow and deep notched quasi-brittle structures", Int. J. Fract., 95, 379-390. https://doi.org/10.1023/A:1018633208621
- Karihaloo, B.L., Abdalla, H.M. and Xiao, Q.Z. (2003), "Size effect in concrete beams", Eng. Fract. Mech., 70(7-8), 979-993. https://doi.org/10.1016/S0013-7944(02)00161-3
- Karihaloo, B.L., Murthy, A.R. and Iyer, N.R. (2013), "Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model", Cement Concrete Res., 49, 82-88. https://doi.org/10.1016/j.cemconres.2013.03.010
- Karihaloo, B.L. and Xiao, Q.Z. (2001), "Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity", Eng. Fract. Mech., 68(15), 1609-1630. https://doi.org/10.1016/S0013-7944(01)00063-7
- Karihaloo, B.L. and Xiao, Q.Z. (2001), "Higher order terms of the crack tip asymptotic field for a notched three-point bend beam", Int. J. Fract., 112, 111-128. https://doi.org/10.1023/A:1013392324585
- Karihaloo, B.L. and Xiao, Q.Z. (2001), "Higher order terms of the crack tip asymptotic field for a wedge-splitting specimen", Int. J. Fract., 112, 129-137. https://doi.org/10.1023/A:1013366025494
- Karihaloo, B.L. and Xiao, Q.Z. (2007), Accurate Simulation of Frictionless and Frictional Cohesive Crack Growth in Quasi-Brittle Materials Using XFEM, Springer Netherlands, Dordrecht.
- Karihaloo, B.L. and Xiao, Q.Z. (2008), "Asymptotic fields at the tip of a cohesive crack", Int. J. Fract., 150(1-2), 55-74. https://doi.org/10.1007/s10704-008-9218-2
- Karihaloo, B.L. and Xiao, Q.Z. (2010), "Asymptotic fields ahead of mixed mode frictional cohesive cracks", ZAMM-J. Appl. Math. Mech., Zeitschrift fur Angewandte Mathematik und Mechanik, 90(9), 710-720. https://doi.org/10.1002/zamm.200900386
- Khoramishad, H., Akbardoost, J. and Ayatollahi, M. (2013), "Size effects on parameters of cohesive zone model in mode I fracture of limestone", Int. J. Damage Mech., 23(4), 588-605. https://doi.org/10.1177/1056789513504319
- Kotousov, A., Lazzarin, P., Berto, F. and Harding, S. (2010), "Effect of the thickness on elastic deformation and quasi-brittle fracture of plate components", Eng. Fract. Mech., 77(11), 1665-1681. https://doi.org/10.1016/j.engfracmech.2010.04.008
- Lei, W.S. (2018), "A generalized weakest-link model for size effect on strength of quasi-brittle materials", J. Mater. Sci., 53(2), 1227-1245. https://doi.org/10.1007/s10853-017-1574-8
- Leicester, R. (1969). "The size effect of notches.", Proceedings of the Second Australasian Conference on Mechanics of Materials and Structures., Melbourne.
- Li, M., Hao, H., Shi, Y. and Hao, Y. (2018), "Specimen shape and size effects on the concrete compressive strength under static and dynamic tests", Constr. Build. Mater, 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069
- Li, Z. and Pasternak, H. (2018), "Statistical size effect of flexural members in steel structures", J. Constr. Steel Res., 144, 176-185. https://doi.org/10.1016/j.jcsr.2018.01.025
- Liu, H.Z., Lin, J.S., He, J.D. and Xie, H.Q. (2018), "Discrete elements and size effects", Eng. Fract. Mech., 189, 246-272. https://doi.org/10.1016/j.engfracmech.2017.11.019
- Malikova, L. and Vesely, V. (2015), "The influence of higher order terms of Williams series on a more accurate description of stress fields around the crack tip", Fatig. Fract. Eng. Mater. Struct., 38(1), 91-103. https://doi.org/10.1111/ffe.12221
- Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/ACC.2017.5.6.587
- More, J.J. (1978), The Levenberg-Marquardt algorithm: Implementation and theory, Springer Berlin Heidelberg
- Muralidhara, S., Raghu Prasad, B.K., Karihaloo, B.L. and Singh, R.K. (2011), "Size-independent fracture energy in plain concrete beams using tri-linear model", Constr. Build. Mater, 25(7), 3051-3058. https://doi.org/10.1016/j.conbuildmat.2011.01.003
- Needleman, A. (2018), "Effect of size on necking of dynamically loaded notched bars", Mech. Mater., 116, 180-188. https://doi.org/10.1016/j.mechmat.2016.09.007
- Owen, D.R.J. and Fawkes, A.J. (1983), Engineering Fracture Mechanics: Numerical Methods and Applications, Pineridge Press Ltd., Swansea, UK.
- Pook, L.P. (2013), "A 50-year retrospective review of threedimensional effects at cracks and sharp notches", Fatig. Fract. Eng. Mater. Struct., 36(8), 699-723. https://doi.org/10.1111/ffe.12074
- Pook, L.P., Berto, F. and Campagnolo, A. (2017), "State of the art of corner point singularities under in-plane and out-of-plane loading", Eng. Fract. Mech., 174, 2-9. https://doi.org/10.1016/j.engfracmech.2016.10.001
- Yu, Q., Le, J.L., Hoover, C.G. and Bazant, Z.P. (2010), "Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture", J. Eng. Mech., 136(1), 40-50. https://doi.org/10.1061/(ASCE)EM.1943-7889.89
- Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy", Constr. Build. Mater, 47, 1160-1166. https://doi.org/10.1016/j.conbuildmat.2013.06.004
- Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Determination of size-independent specific fracture energy of concrete mixes by two methods", Cement Concrete Res., 50, 19-25. https://doi.org/10.1016/j.cemconres.2013.03.015
- Rong, G., Peng, J., Yao, M., Jiang, Q. and Wong, L.N.Y. (2018), "Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble", Eng. Geology, 232, 46-55. https://doi.org/10.1016/j.enggeo.2017.11.011
- Timoshenko, S.P. and Goodier, J.N. (1951), Theory of Elasticity, McGraw Hill, New York.
- Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid-element approach to crack problems in plane elasticity", IJNME, 7(3), 297-308. https://doi.org/10.1002/nme.1620070307
- Wan-Wendner, L., Wan-Wendner, R. and Cusatis, G. (2018), "Agedependent size effect and fracture characteristics of ultra-high performance concrete", Cement Concrete Compos., 85, 67-82. https://doi.org/10.1016/j.cemconcomp.2017.09.010
- Weibull, W. (1939). A Statistical Theory of the Strength of Materials, Stockholm.
- Weibull, W. (1951), "A statistical distribution function of wide applicability.", J. Appl. Mech, 18(3), 293-297.
- Williams, M.L. (1961), The Bending Stress Distribution at the Base of a Stationary Crack, ATJEM.
- Xiao, Q. and Karihaloo, B.L. (2006), "Asymptotic fields at frictionless and frictional cohesive crack tips in quasibrittle materials", J. Mech. Mater. Struct., 1(5), 881-910. https://doi.org/10.2140/jomms.2006.1.881
- Xiao, Q.Z. and Karihaloo, B.L. (2007), “An overview of a hybrid crack element and determination of its complete displacement field”, Eng. Fract. Mech., 74(7), 1107-1117. https://doi.org/10.1016/j.engfracmech.2006.12.022
- Yoo, D.Y. and Yang, J.M. (2018), “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams”, Cement Concrete Compos., 87, 137-148. https://doi.org/10.1016/j.cemconcomp.2017.12.010
- Zappalorto, M. and Lazzarin, P. (2013), “Three-dimensional elastic stress fields ahead of notches in thick plates under various loading conditions”, Eng. Fract. Mech., 108, 75-88. https://doi.org/10.1016/j.engfracmech.2013.02.031
피인용 문헌
- Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica vol.22, pp.10, 2018, https://doi.org/10.1177/1369433219837426
- Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.375
- Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures vol.73, pp.14, 2018, https://doi.org/10.1680/jmacr.19.00401