DOI QR코드

DOI QR Code

An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios

  • Karamloo, Mohammad (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Mazloom, Moosa (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
  • Received : 2017.12.12
  • Accepted : 2018.04.13
  • Published : 2018.07.25

Abstract

This study introduces a new algorithm to determine size independent values of fracture energy, fracture toughness, and fracture process zone length in three-point bending specimens with shallow to deep notches. By using the exact beam theory, a concept of equivalent notch length is introduced for specimens with no notches in order to predict the peak loads with acceptable precisions. Moreover, the method considers the variations of fracture process zone length and effects of higher order terms of stress field in each specimen size. In this paper, it was demonstrated that the use of some recently developed size effect laws raises some concerns due to the use of nonlinear regression analysis. By using a comprehensive fracture test data, provided by Hoover and Bazant, the algorithm has been assessed. It could be concluded that the proposed algorithm can facilitate a powerful tool for size effect study of three-point bending specimens with different notch lengths.

Keywords

References

  1. Aissaoui, N. and Matallah, M. (2017), "A mesoscale investigation on the size effect of the fracture characteristics in concrete", Int. J. GEOMATE, 12(32), 126-133.
  2. Akbardoost, J. and Rastin, A. (2015), "Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading", Theor. Appl. Fract. Mech., 76, 75-90. https://doi.org/10.1016/j.tafmec.2015.01.004
  3. Alyhya, W.S., Abo Dhaheer, M.S., Al-Rubaye, M.M. and Karihaloo, B.L. (2016), "Influence of mix composition and strength on the fracture properties of self-compacting concrete", Constr. Build. Mater, 110, 312-322. https://doi.org/10.1016/j.conbuildmat.2016.02.037
  4. Ayatollahi, M.R. and Akbardoost, J. (2012), "Size effects on fracture toughness of quasi-brittle materials-A new approach", Eng. Fract. Mech., 92, 89-100. https://doi.org/10.1016/j.engfracmech.2012.06.005
  5. Ayatollahi, M.R. and Akbardoost, J. (2013), "Size and geometry effects on rock fracture toughness: Mode I fracture", Rock Mech. Rock Eng., 47(2), 677-687. https://doi.org/10.1007/s00603-013-0430-7
  6. Ayatollahi, M.R. and Akbardoost, J. (2013), "Size effects in mode II brittle fracture of rocks", Eng. Fract. Mech., 112-113, 165-180. https://doi.org/10.1016/j.engfracmech.2013.10.011
  7. Ayatollahi, M.R. and Nejati, M. (2011), "Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method", Int. J. Mech. Sci., 53(3), 164-177. https://doi.org/10.1016/j.ijmecsci.2010.12.005
  8. Bazant, Z. and Pfeiffer, P. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Mater. J., 84(6), 463-480.
  9. Bazant, Z.P. (1984), "Size effect in blunt fracture: concrete, rock, metal", J. Eng. Mech., 110(4), 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  10. Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cement Concrete Res., 32, 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
  11. Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent r-curves", Int. J. Rock Mech. Min. Sci., 28, 43-51. https://doi.org/10.1016/0148-9062(91)93232-U
  12. Bazant, Z.P. and Kazemi, M.T. (1990), "Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete", Int. J. Fract., 44, 111-131. https://doi.org/10.1007/BF00047063
  13. Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Nonlinear fracture properties from size effect tests", J. Struct. Eng., 112.
  14. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-177.
  15. Bazant, Z.P. and Planas, J. (1998), Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials, CRC Press
  16. Bazant, Z.P. and Yu, Q. (2009), "Universal size effect law and effect of crack depth on quasi-brittle structure strength", J. Eng. Mech., 135(2), 78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78)
  17. Berto, F., Ayatollahi, M.R., Vantadori, S. and Carpinteri, A. (2017), "Review of the Influence of non-singular higher order terms on the stress field of thin welded lap joints and small inclined cracks in plates", Frattura ed Integrita Strutturale, 41, 260-268.
  18. Berto, F., Kotousov, A., Lazzarin, P. and Pegorin, F. (2013), "On a coupled mode at sharp notches subjected to anti-plane loading", Eur. J. Mech., A/Solid., 38, 70-78. https://doi.org/10.1016/j.euromechsol.2012.09.007
  19. Berto, F. and Lazzarin, P. (2010), "On higher order terms in the crack tip stress field", Int. J. Fract., 161(2), 221-226. https://doi.org/10.1007/s10704-010-9443-3
  20. Berto, F. and Lazzarin, P. (2013), "Multiparametric full-field representations of the in-plane stress fields ahead of cracked components under mixed mode loading", Int. J. Fatig., 46, 16-26. https://doi.org/10.1016/j.ijfatigue.2011.12.004
  21. Berto, F., Lazzarin, P. and Ayatollahi, M.R. (2013), "Recent Developments in Brittle and Quasi-Brittle Failure Assessment of Graphite by Means of SED", Key Eng. Mater., 577-578, 25-28. https://doi.org/10.4028/www.scientific.net/KEM.577-578.25
  22. Berto, F., Lazzarin, P. and Kotousov, A. (2011), "On higher order terms and out-of-plane singular mode", Mech. Mater., 43(6), 332-341. https://doi.org/10.1016/j.mechmat.2011.03.004
  23. Cedolin, L. and Cusatis, G. (2008), "Identification of concrete fracture parameters through size effect experiments", Cement Concrete Compos., 30(9), 788-797. https://doi.org/10.1016/j.cemconcomp.2008.05.007
  24. Cendon, D.A., Jin, N., Liu, Y., Berto, F. and Elices, M. (2017), "Numerical assessment of gray cast iron notched specimens by using a triaxiality-dependent cohesive zone model", Theor. Appl. Fract. Mech., 90, 259-267. https://doi.org/10.1016/j.tafmec.2017.06.001
  25. Cifuentes, H. and Karihaloo, B.L. (2013), "Determination of sizeindependent specific fracture energy of normal-and highstrength self-compacting concrete from wedge splitting tests", Constr. Build. Mater, 48, 548-553. https://doi.org/10.1016/j.conbuildmat.2013.07.062
  26. Coleman, T.F. and Li, Y. (1992), "On the convergence of interiorreflective Newton methods for nonlinear minimization subject to bounds", Math. Program., 67(1), 189-224. https://doi.org/10.1007/BF01582221
  27. Coleman, T.F. and Li, Y. (1996), "An interior trust region approach for nonlinear minimization subject to bounds", SIAM J. Optim., 6(2), 418-445. https://doi.org/10.1137/0806023
  28. Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76(14), 2163-2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
  29. Duan, K. and Hu, X. (2004), Scaling of Specimen Boundary Effect on Quasi-Brittle Fracture, Brisbane, Australia.
  30. Duan, K., Hu, X. and Wittmann, F.H. (2003), "Boundary effect on concrete fracture and non-constant fracture energy distribution", Eng. Fract. Mech., 70(16), 2257-2268. https://doi.org/10.1016/S0013-7944(02)00223-0
  31. Duan, K., Hu, X. and Wittmann, F.H. (2006), "Scaling of quasibrittle fracture: Boundary and size effect", Mech. Mater., 38(1-2), 128-141. https://doi.org/10.1016/j.mechmat.2005.05.016
  32. Duan, K., Hu, X. and Wittmann, F.H. (2007), "Size effect on specific fracture energy of concrete", Eng. Fract. Mech., 74(1-2), 87-96. https://doi.org/10.1016/j.engfracmech.2006.01.031
  33. He, Z., Kotousov, A., Berto, F. and Branco, R. (2016), "A brief review of recent three-dimensional studies of brittle fracture", Phys. Mesomech., 19(1), 6-20. https://doi.org/10.1134/S1029959916010021
  34. Heydari-Meybodi, M., Ayatollahi, M.R., Dehghany, M. and Berto, F. (2017), "Mixed-mode (I/II) failure assessment of rubber materials using the effective stretch criterion", Theor. Appl. Fract. Mech., 91, 126-133. https://doi.org/10.1016/j.tafmec.2017.05.001
  35. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  36. Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fract., 187(1), 133-143. https://doi.org/10.1007/s10704-013-9926-0
  37. Hoover, C.G. and Bazant, Z.P. (2014), "Comparison of the huduan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests", J. Eng. Mech., 140(3), 480-486. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000632
  38. Hoover, C.G. and Bazant, Z.P. (2014), "Universal size-shape effect law based on comprehensive concrete fracture tests", J. Eng. Mech., 140(3), 473-479. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000627
  39. Hoover, C.G. and P. Bazant, Z. (2013), "Comprehensive concrete fracture tests: Size effects of Types 1 & 2, crack length effect and postpeak", Eng. Fract. Mech., 110, 281-289. https://doi.org/10.1016/j.engfracmech.2013.08.008
  40. Hoover, C G., Bazant, Z.P., Vorel, J., Wendner, R. and Hubler, M.H. (2013), "Comprehensive concrete fracture tests:Description and results", Eng. Fract. Mech., 114, 92-103. https://doi.org/10.1016/j.engfracmech.2013.08.007
  41. Hu, X. and Duan, K. (2004), "Influence of fracture process zone height on fracture energy of concrete", Cement Concrete Res., 34(8), 1321-1330. https://doi.org/10.1016/j.cemconres.2003.12.027
  42. Hu, X. and Duan, K. (2007), "Size effect: Influence of proximity of fracture process zone to specimen boundary", Eng. Fract. Mech., 74(7), 1093-1100. https://doi.org/10.1016/j.engfracmech.2006.12.009
  43. Hu, X. and Duan, K. (2009), "Size effect and quasi-brittle fracture: the role of FPZ", Int. J. Fract., 154(1-2), 3-14. https://doi.org/10.1007/s10704-008-9290-7
  44. Hu, X., Guan, J., Wang, Y., Keating, A. and Yang, S. (2017), "Comparison of boundary and size effect models based on new developments", Eng. Fract. Mech., 175, 146-167. https://doi.org/10.1016/j.engfracmech.2017.02.005
  45. Duan, K., Hu, X.Z. and Wittmann, F.H. (2003), "Size effect on fracture resistance and fracture energy of concrete", Mater. Struct., 36(2), 74-80. https://doi.org/10.1007/BF02479520
  46. Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Effects of maximum aggregate size on fracture behaviors of selfcompacting lightweight concrete.", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061
  47. Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168 Part A, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011
  48. Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stressbased approach", Mater. Today Commun., 13, 36-45. https://doi.org/10.1016/j.mtcomm.2017.08.002
  49. Karihaloo, B.L. (1999), "Size effect in shallow and deep notched quasi-brittle structures", Int. J. Fract., 95, 379-390. https://doi.org/10.1023/A:1018633208621
  50. Karihaloo, B.L., Abdalla, H.M. and Xiao, Q.Z. (2003), "Size effect in concrete beams", Eng. Fract. Mech., 70(7-8), 979-993. https://doi.org/10.1016/S0013-7944(02)00161-3
  51. Karihaloo, B.L., Murthy, A.R. and Iyer, N.R. (2013), "Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model", Cement Concrete Res., 49, 82-88. https://doi.org/10.1016/j.cemconres.2013.03.010
  52. Karihaloo, B.L. and Xiao, Q.Z. (2001), "Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity", Eng. Fract. Mech., 68(15), 1609-1630. https://doi.org/10.1016/S0013-7944(01)00063-7
  53. Karihaloo, B.L. and Xiao, Q.Z. (2001), "Higher order terms of the crack tip asymptotic field for a notched three-point bend beam", Int. J. Fract., 112, 111-128. https://doi.org/10.1023/A:1013392324585
  54. Karihaloo, B.L. and Xiao, Q.Z. (2001), "Higher order terms of the crack tip asymptotic field for a wedge-splitting specimen", Int. J. Fract., 112, 129-137. https://doi.org/10.1023/A:1013366025494
  55. Karihaloo, B.L. and Xiao, Q.Z. (2007), Accurate Simulation of Frictionless and Frictional Cohesive Crack Growth in Quasi-Brittle Materials Using XFEM, Springer Netherlands, Dordrecht.
  56. Karihaloo, B.L. and Xiao, Q.Z. (2008), "Asymptotic fields at the tip of a cohesive crack", Int. J. Fract., 150(1-2), 55-74. https://doi.org/10.1007/s10704-008-9218-2
  57. Karihaloo, B.L. and Xiao, Q.Z. (2010), "Asymptotic fields ahead of mixed mode frictional cohesive cracks", ZAMM-J. Appl. Math. Mech., Zeitschrift fur Angewandte Mathematik und Mechanik, 90(9), 710-720. https://doi.org/10.1002/zamm.200900386
  58. Khoramishad, H., Akbardoost, J. and Ayatollahi, M. (2013), "Size effects on parameters of cohesive zone model in mode I fracture of limestone", Int. J. Damage Mech., 23(4), 588-605. https://doi.org/10.1177/1056789513504319
  59. Kotousov, A., Lazzarin, P., Berto, F. and Harding, S. (2010), "Effect of the thickness on elastic deformation and quasi-brittle fracture of plate components", Eng. Fract. Mech., 77(11), 1665-1681. https://doi.org/10.1016/j.engfracmech.2010.04.008
  60. Lei, W.S. (2018), "A generalized weakest-link model for size effect on strength of quasi-brittle materials", J. Mater. Sci., 53(2), 1227-1245. https://doi.org/10.1007/s10853-017-1574-8
  61. Leicester, R. (1969). "The size effect of notches.", Proceedings of the Second Australasian Conference on Mechanics of Materials and Structures., Melbourne.
  62. Li, M., Hao, H., Shi, Y. and Hao, Y. (2018), "Specimen shape and size effects on the concrete compressive strength under static and dynamic tests", Constr. Build. Mater, 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069
  63. Li, Z. and Pasternak, H. (2018), "Statistical size effect of flexural members in steel structures", J. Constr. Steel Res., 144, 176-185. https://doi.org/10.1016/j.jcsr.2018.01.025
  64. Liu, H.Z., Lin, J.S., He, J.D. and Xie, H.Q. (2018), "Discrete elements and size effects", Eng. Fract. Mech., 189, 246-272. https://doi.org/10.1016/j.engfracmech.2017.11.019
  65. Malikova, L. and Vesely, V. (2015), "The influence of higher order terms of Williams series on a more accurate description of stress fields around the crack tip", Fatig. Fract. Eng. Mater. Struct., 38(1), 91-103. https://doi.org/10.1111/ffe.12221
  66. Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/ACC.2017.5.6.587
  67. More, J.J. (1978), The Levenberg-Marquardt algorithm: Implementation and theory, Springer Berlin Heidelberg
  68. Muralidhara, S., Raghu Prasad, B.K., Karihaloo, B.L. and Singh, R.K. (2011), "Size-independent fracture energy in plain concrete beams using tri-linear model", Constr. Build. Mater, 25(7), 3051-3058. https://doi.org/10.1016/j.conbuildmat.2011.01.003
  69. Needleman, A. (2018), "Effect of size on necking of dynamically loaded notched bars", Mech. Mater., 116, 180-188. https://doi.org/10.1016/j.mechmat.2016.09.007
  70. Owen, D.R.J. and Fawkes, A.J. (1983), Engineering Fracture Mechanics: Numerical Methods and Applications, Pineridge Press Ltd., Swansea, UK.
  71. Pook, L.P. (2013), "A 50-year retrospective review of threedimensional effects at cracks and sharp notches", Fatig. Fract. Eng. Mater. Struct., 36(8), 699-723. https://doi.org/10.1111/ffe.12074
  72. Pook, L.P., Berto, F. and Campagnolo, A. (2017), "State of the art of corner point singularities under in-plane and out-of-plane loading", Eng. Fract. Mech., 174, 2-9. https://doi.org/10.1016/j.engfracmech.2016.10.001
  73. Yu, Q., Le, J.L., Hoover, C.G. and Bazant, Z.P. (2010), "Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture", J. Eng. Mech., 136(1), 40-50. https://doi.org/10.1061/(ASCE)EM.1943-7889.89
  74. Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy", Constr. Build. Mater, 47, 1160-1166. https://doi.org/10.1016/j.conbuildmat.2013.06.004
  75. Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Determination of size-independent specific fracture energy of concrete mixes by two methods", Cement Concrete Res., 50, 19-25. https://doi.org/10.1016/j.cemconres.2013.03.015
  76. Rong, G., Peng, J., Yao, M., Jiang, Q. and Wong, L.N.Y. (2018), "Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble", Eng. Geology, 232, 46-55. https://doi.org/10.1016/j.enggeo.2017.11.011
  77. Timoshenko, S.P. and Goodier, J.N. (1951), Theory of Elasticity, McGraw Hill, New York.
  78. Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid-element approach to crack problems in plane elasticity", IJNME, 7(3), 297-308. https://doi.org/10.1002/nme.1620070307
  79. Wan-Wendner, L., Wan-Wendner, R. and Cusatis, G. (2018), "Agedependent size effect and fracture characteristics of ultra-high performance concrete", Cement Concrete Compos., 85, 67-82. https://doi.org/10.1016/j.cemconcomp.2017.09.010
  80. Weibull, W. (1939). A Statistical Theory of the Strength of Materials, Stockholm.
  81. Weibull, W. (1951), "A statistical distribution function of wide applicability.", J. Appl. Mech, 18(3), 293-297.
  82. Williams, M.L. (1961), The Bending Stress Distribution at the Base of a Stationary Crack, ATJEM.
  83. Xiao, Q. and Karihaloo, B.L. (2006), "Asymptotic fields at frictionless and frictional cohesive crack tips in quasibrittle materials", J. Mech. Mater. Struct., 1(5), 881-910. https://doi.org/10.2140/jomms.2006.1.881
  84. Xiao, Q.Z. and Karihaloo, B.L. (2007), “An overview of a hybrid crack element and determination of its complete displacement field”, Eng. Fract. Mech., 74(7), 1107-1117. https://doi.org/10.1016/j.engfracmech.2006.12.022
  85. Yoo, D.Y. and Yang, J.M. (2018), “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams”, Cement Concrete Compos., 87, 137-148. https://doi.org/10.1016/j.cemconcomp.2017.12.010
  86. Zappalorto, M. and Lazzarin, P. (2013), “Three-dimensional elastic stress fields ahead of notches in thick plates under various loading conditions”, Eng. Fract. Mech., 108, 75-88. https://doi.org/10.1016/j.engfracmech.2013.02.031

Cited by

  1. Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica vol.22, pp.10, 2018, https://doi.org/10.1177/1369433219837426
  2. Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.375
  3. Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures vol.73, pp.14, 2018, https://doi.org/10.1680/jmacr.19.00401