DOI QR코드

DOI QR Code

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L. (University Center of the Guaxupe Educational Foundation (UNIFEG)) ;
  • Gomes, Guilherme F. (Mechanical Engineering Institute, Federal University of Itajuba (UNIFEI)) ;
  • Mendez, Yohan D. (Mechanical Engineering Institute, Federal University of Itajuba (UNIFEI)) ;
  • Almeida, Fabricio A. (Institute of Industrial Engineering and Management, Federal University of Itajuba (UNIFEI)) ;
  • Santos, Valquiria C. (Institute of Natural Resources, Federal University of Itajuba (UNIFEI)) ;
  • Cunha, Sebastiao S.Jr. (Mechanical Engineering Institute, Federal University of Itajuba (UNIFEI))
  • Received : 2017.12.13
  • Accepted : 2018.04.12
  • Published : 2018.07.25

Abstract

Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Keywords

References

  1. Alam, M. and Hussein, A. (2012), "Size effect on shear strength of FRP reinforced concrete beams without stirrups", J. Compos. Constr., 17(4), 507-516. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000346
  2. Altunișik, A.C., Bayraktar, A. and Sevim, B. (2013), "Analytical and experimental modal analyses of a highway bridge model", Comput. Concrete, 12(6) 803-818. https://doi.org/10.12989/cac.2013.12.6.803
  3. Azad, A., Mirza, M. and Chan, P. (1989), "Fracture energy of weakly reinforced concrete beams", Fatig. Fract. Eng. Mater. Struct., 12(1), 9-18. https://doi.org/10.1111/j.1460-2695.1989.tb00504.x
  4. Bastos, P.S.D.S. (2008), Dimensionamento de Vigas de Concreto Armado a Forca Cortante, UNESP, Sao Paulo.
  5. Colajanni, P., Mendola, L., Mancini, G., Recupero, A. and Spinella, N. (2014), "Shear capacity in concrete beams reinforced by stirrups with two different inclinations", Eng. Struct., 81, 444-453. https://doi.org/10.1016/j.engstruct.2014.10.011
  6. Colajanni, P., Recupero, A. and Spinella, N. (2014), "Design procedure for prestressed concrete beams", Comput. Concrete, 13(2), 235-253. https://doi.org/10.12989/cac.2014.13.2.235
  7. Colajanni, P., Recupero, A. and Spinella, N. (2014), "Design procedure for prestressed concrete beams", Comput. Concrete, 13(2), 235-253. https://doi.org/10.12989/cac.2014.13.2.235
  8. Collins, M.P., Mitchell, D., Adebar, P.E. and Vecchio, F.J. (1996), "A general shear design method", ACI Struct. J., 93(1), 36-45.
  9. Cosgun, T. and Sayin, B. (2014), "A method for the non-linear and failure load analysis of reinforced concrete frames", Comput. Concrete, 14(1), 41-57. https://doi.org/10.12989/cac.2014.14.1.041
  10. Dawari, V.B. and Vesmawala, G.R. (2014), "Application of nonlinear concrete model for finite element analysis of reinforced concrete beams", Int. J. Scientif. Eng. Res., 5(9), 776-782.
  11. Deivanai, R. and Sathia, R. (2016), "A comparative study of welded and tied shear reinforcement in beams", J. Chem. Pharmaceut. Sci., 9(3), 1535-1537.
  12. Fan, X.Q. and Hu, S.W. (2013), "Influence of crack initiation length on fracture behaviors of reinforced concrete", Appl. Clay Sci., 79, 25-29 https://doi.org/10.1016/j.clay.2013.02.026
  13. Ferro, G., Carpinteri, A. and Ventura, G. (2007), "Minimum reinforcement in concrete structures and material structural instability", Int. J. Fract., 146(4), 213-231. https://doi.org/10.1007/s10704-007-9162-6
  14. Fiorin, E. (1998), "Arranjos de armaduras em estruturas de concreto armado", Doctoral Dissertation, Universidade de Sao Paulo, Sao Carlos, SP.
  15. Fusco, P.B. (1995), Tecnica de Armar as Estruturas de Concreto, Pini.
  16. Fusco, P.B. (2000), Estruturas de Concreto: Solicitacoes Normais, Estados Limites Ultimos, Teoria e Aplicacoes, Rio de Janeiro, LTC, c1981. 464, ISBN 85-216-1143-9.
  17. Giongo, J.S. (2005), Concreto Armado: Projeto Estrutural de Edificios, EESC/SET.
  18. Gursoy, S. (2014), "Investigation of nonlinear behaviour of reinforced concrete frames having different stiffening members", Comput. Concrete, 13(5), 679-694. https://doi.org/10.12989/cac.2014.13.5.679
  19. Haifeng, L. and Jianguo, N. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41, 1298-1308 https://doi.org/10.1016/j.mechmat.2009.05.008
  20. Han, J., Cai, Y., Lin, C., Gao, G. and Wang, F. (2011), "Experimental research on seismic behavior of unbonded precast reinforced concrete frame", Syst. Eng. Procedia, 1, 137-141 https://doi.org/10.1016/j.sepro.2011.08.023
  21. Hossain, T. and Okeil, A.M. (2014), "Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges", Comput. Concrete, 14(2), 109-125. https://doi.org/10.12989/cac.2014.14.2.109
  22. Hu, S.W., Lu, J. and Zhong, X. (2011), "Study on characteristics of acoustic emission property in the normal concrete fracture test", Adv. Mater. Res., 189-193, 1117-1121. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1117
  23. Ibraheem, O.F., Abu, B. and Johari, I. (2014), "Fiber reinforced concrete L-beams under combined loading", Comput. Concrete, 14(1), 1-18. https://doi.org/10.12989/cac.2014.14.1.001
  24. Javidan, F., Shahbeyk, S. and Safarnejad, M. (2014), "Lattice discrete particle modeling of compressive failure in hollow concrete blocks", Comput. Concrete, 13(4), 437-456. https://doi.org/10.12989/cac.2014.13.4.437
  25. Ju, Y.K., Kim, J.Y. and Kim, S.D. (2007), "Experimental evaluation of new concrete encased steel composite beam to steel column joint", J. Struct. Eng., 133(4), 519-529. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:4(519)
  26. Kaefer, L.F. (1998), A Evolucao do Concreto Armado, Sao Paulo, 43.
  27. Kaklauskas, G. and Ghaboussi, J. (2001), "Stress-strain relations for cracked tensile concrete from RC beam tests", J. Struct. Eng., 127(1), 64-73. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64)
  28. Khan, M., Fahad, M. and Shahzada, K. (2015), "Shear capacity of reinforced concrete beams using swimmer bars as shear reinforcement", Int. J. Civil Eng., 2(6), 20-26. https://doi.org/10.14445/23488352/IJCE-V2I11P104
  29. Leonhardt, F. and Monnig, E. (1977), "Construcoes de concreto: principios basicos do dimensionamento de estruturas de concreto armado", Interciencia, 1, Rio de Janeiro.
  30. Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628 https://doi.org/10.1016/j.matdes.2013.11.069
  31. Lucas, W.D. (2011), "The discrete rotation behaviour of reinforced concrete beams under shear loading", Doctoral Dissertation.
  32. Lykidis, G.C. and Spiliopoulos, K.V. (2014), "An efficient numerical simulation of the cyclic loading experiments on RC structures", Comput. Concrete, 13(3), 343-359. https://doi.org/10.12989/cac.2014.13.3.343
  33. Markou, G. and Papadrakakis, M. (2013), "Computationally efficient 3D finite element modeling of RC structures", Comput. Concrete, 12(4), 443-498. https://doi.org/10.12989/cac.2013.12.4.443
  34. Marzec, I., Skarzynski, L., Bobinski, J. and Tejchman, J. (2013), "Modelling reinforced concrete beams under mixed sheartension failure with different continuous FE approaches", Comput. Concrete, 12(5), 585-612. https://doi.org/10.12989/cac.2013.12.5.585
  35. Mattock, A.H. and Hawkins, N.M. (1972), "Shear transfer in reinforced concrete-Recent research", PCI J., 17(2), 55-75. https://doi.org/10.15554/pcij.03011972.55.75
  36. Mosoarcam, M. and Victorm, G. (2013), "Structural safety of historical buildings made of reinforced concrete, from Banat region-Romania", J. Cult. Heritage, 14, e29-e34. https://doi.org/10.1016/j.culher.2012.11.015
  37. Nielsen, M.P. (1984), Limit Analysis and Concrete Plasticity, Prentice-Hall, Englewood Cliffs, NJ.
  38. Oehlers, D.J., Ali, M.M. and Griffith, M.C. (2008), "Concrete component of the rotational ductility of reinforced concrete flexural members", Adv. Struct. Eng., 11(3), 281-291. https://doi.org/10.1260/136943308785082571
  39. Rosso, T. (1980), Racionalizacao da Construcao, FAUUSP, Sao Paulo.
  40. Ruiz, G., Elices, M. and Planas, J. (1998), "Experimental study of fracture of lightly reinforced concrete beams", Mater. Struct., 31(214), 683-691. https://doi.org/10.1007/BF02480445
  41. Russo, G. and Puleri, G. (1997), "Stirrup effectiveness in reinforced concrete beams under flexure and shear", ACI Struct. J., 94(3), 451-476.
  42. Russo, G., Somma, G. and Angeli, P. (2004), "Design shear strength formula for high strength concrete beams", Mater. Struct., 37(274), 680-688. https://doi.org/10.1007/BF02480513
  43. Russo, G., Venier, R. and Pauletta, M. (2005), "Reinforced concrete deep beams-shear strength model and design formula", ACI Struct. J., 102(3), 429-437.
  44. Saw, H.A., Villaescusa, E., Windsor, C.R. and Thompson, A.G. (2017), "Surface support capabilities of freshly sprayed fibre reinforced concrete and safe re-entry time for underground excavations", Tunnel. Underg. Space Technol., 64, 34-42 https://doi.org/10.1016/j.tust.2017.01.005
  45. Shatarat, N., Katkhuda, H., Abdel-Jaber, M. and Alqam, M. (2016), "Experimental investigation of reinforced concrete beams with spiral reinforcement concrete beams with spiral reinforcement in shear", Constr. Build. Mater., 125, 585-594. https://doi.org/10.1016/j.conbuildmat.2016.08.070
  46. Shedeh, G. (2015), "Beam shear analysis of concrete with fiberreinforcement plastic", Int. J. Res. Civil Eng., 3(1), 7-20.
  47. Silva, R.C.D. (2003), "Vigas de concreto armado com telas soldadas: analise teorica e experimental da resistencia a forca cortante e do controle da fissuracao", Doctoral Dissertation, Universidade de Sao Paulo.
  48. Souza, M.D. and Rodrigues, R. (2008), Sistemas Estruturais de Edificacoes e Exemplos, Orientador Dr. Nilson Tadeu Mascia, Sao Paulo.
  49. Sussekind, J.C. (1977). Curso de Analise Estrutural-Vol. 2: Deformacoes em Estruturas, Metodo das Forcas-Vol. 3: Metodo das Deformacoes, Processo de Cross.
  50. Turker, T. and Bayraktar, A. (2014), "Vibration based damage detection in a scaled reinforced concrete building by FE model updating", Comput. Concrete, 14(1), 73-90. https://doi.org/10.12989/cac.2014.14.1.073
  51. Ulzurrun, G. and Zanuy, C. (2017), "Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers", Constr. Build. Mater., 145, 166-182. https://doi.org/10.1016/j.conbuildmat.2017.04.005
  52. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231
  53. Xuan, X.Y. (1987), "Effectiveness of welded wire fabric as shear reinforcement in pretensioned prestressed concrete T-beams", A Thesis presented to the University of Manitoba in partiaì fuìfillment of the requi rements for the degree of M.Sc. in the Department of Civil Engineering.
  54. Yelgin, A.N., O zyurt, M.Z. and Uysal, M. (2014), "The structural behaviour of composite beams with prefabricated reinforced concrete plate in positive moment zone", Constr. Build. Mater., 68, 627-629 https://doi.org/10.1016/j.conbuildmat.2014.06.088
  55. Zhou, Z., Wu, C., Meng, S.P. and Wu, J. (2014), "Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident", Comput. Concrete, 14(2), 127-143. https://doi.org/10.12989/cac.2014.14.2.127
  56. Zhu, H.Y., Deng, J.G., Zhao, J., Zhao, H., Liu, H.L. and Wang, T. (2014), "Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing", Comput. Concrete, 14(1), 91-107. https://doi.org/10.12989/cac.2014.14.1.091