DOI QR코드

DOI QR Code

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E. (Department of Civil Engineering, Scholl of Engineering, Democritus University of Thrace, Laboratory of Reinforced Concrete and Seismic Design of Structures) ;
  • Panagiotopoulos, Thomas A. (Department of Civil Engineering, Scholl of Engineering, Democritus University of Thrace, Laboratory of Reinforced Concrete and Seismic Design of Structures)
  • Received : 2017.06.12
  • Accepted : 2018.04.04
  • Published : 2018.07.25

Abstract

A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Keywords

References

  1. Abbas, A.A., Mohsin, S.M.S. and Cotsovos, D.M. (2014), "Seismic response of steel fibre reinforced concrete beamcolumn joints", Eng. Struct., 67, 261-283.
  2. Amato, G., Campione, G., Cavaleri, L. and Minafo, G. (2011), "Flexural behaviour of external R/C steel fibre reinforced beamcolumn joints", Eur. Environ. Civil Eng., 15(9), 1253-1276. https://doi.org/10.1080/19648189.2011.9714854
  3. Ashour, S.A. and Wafa, F.F. (1993), "Flexural behavior of highstrength fiber reinforced concrete beams", ACI Struct., 90(3), 279-287.
  4. Ashour, S.A., Wafa, F.F. and Kamal, M.I. (2000), "Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams", Eng. Struct., 22(9), 1145-1158. https://doi.org/10.1016/S0141-0296(99)00052-8
  5. Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fibre reinforced self-compacting concrete", Struct. Eng. Mech., 46(2), 295-322. https://doi.org/10.12989/sem.2013.46.2.295
  6. Aslani, F. and Nejadi, S. (2012), "Bond characteristics of steel fibre reinforced self-compacting concrete", Can. Civil Eng., 39(7), 834-848. https://doi.org/10.1139/l2012-069
  7. Aslani, F., Nejadi, S. and Samali, N. (2014), "Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres", Comput. Concrete, 14(4), 419-444. https://doi.org/10.12989/cac.2014.14.4.419
  8. Barros, J.A. and Figueiras, J.A. (1999), "Flexural behaviour of SFRC: Testing and modeling", J. Mater. Civil Eng., 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
  9. Bentur, A. and Mindess, S. (2007), Fibre Reinforced Cementitious Composites, Modern Concrete Technology Series Second, Taylor & Francis, New York.
  10. Cagatay, I. and Dincer, R. (2011), "Modeling of concrete containing steel fibers: Toughness and mechanical properties", Comput. Concrete, 8(3), 357-369. https://doi.org/10.12989/cac.2011.8.3.357
  11. Campione, G. (2015), "Analytical prediction of load deflection curves of external steel fibers R/C beam-column joints under monotonic loading", Eng. Struct., 83(11), 86-98. https://doi.org/10.1016/j.engstruct.2014.10.047
  12. Campione, G. and Mangiavillano, M.L. (2008), "Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations", Eng. Struct., 30, 2970-2980. https://doi.org/10.1016/j.engstruct.2008.04.019
  13. CEN (2004), Eurocode 2. Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings (EN 1992-1-1), Brussels.
  14. Chalioris, C.E. (2013a), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Constr. Build. Mater., 43(1), 317-336. https://doi.org/10.1016/j.conbuildmat.2013.02.039
  15. Chalioris, C.E. (2013b), "Steel fibrous RC Beams subjected to cyclic deformations under predominant shear", Eng. Struct., 49(1), 104-118. https://doi.org/10.1016/j.engstruct.2012.10.010
  16. Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007
  17. Chalioris, C.E. and Liotoglou, F.A. (2015), "Tests and simplified behavioural model for steel fibrous concrete under compression", Adv. Civil Eng. Build. Mater., 4(1), 195-199.
  18. Chalioris, C.E. and Sfiri, E.F. (2011), "Shear performance of steel fibrous concrete beams", Proc. Eng., 14(1), 2064-2068. https://doi.org/10.1016/j.proeng.2011.07.259
  19. CNR (2007), Guide for the Design and Construction of Fiber-Reinforced Concrete Structures (CNR-DT 204/2006), Rome.
  20. Colajanni, P., Recupero, A. and Spinella, N. (2012), "Generalization of shear truss model to the case of SFRC beams with stirrups", Comput. Concrete, 9(3), 227-244. https://doi.org/10.12989/cac.2012.9.3.227
  21. Cuenca, E., Echegaray-Oviedo, J. and Serna, P. (2015), "Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams", Compos. Part B: Eng., 75, 135-147. https://doi.org/10.1016/j.compositesb.2015.01.037
  22. Daniel, L. and Loukili, A. (2002), "Behavior of high-strength fiber-reinforced concrete beams under cyclic loading", ACI Struct., 99(3), 248-256.
  23. Duzgun, O.A., Gul, R. and Aydin, A.C. (2005), "Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete", Mater. Lett., 59(27), 3357-3363. https://doi.org/10.1016/j.matlet.2005.05.071
  24. Fu, Q., Ma, Q., Jin, X., Shah, A. and Tian, Y. (2014), "Fracture property of steel fiber reinforced concrete at early age", Comput. Concrete, 13(1), 31-47. https://doi.org/10.12989/cac.2014.13.1.031
  25. Gao, J., Sun, W. and Morino, K. (1997), "Mechanical properties of steel fiber-reinforced, high-strength, lightweight, concrete", Cement Concrete Compos., 19(4), 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1
  26. Greenough, T. and Nehdi, M. (2008), "Shear behavior of fiberreinforced self-consolidating concrete slender beams", ACI Matet., 105(5), 468-477.
  27. Hassan, A.M.T., Jones, S.W. and Mahmud, G.H. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030
  28. Jain, K. and Singh, B. (2016), "Deformed steel fibres as minimum shear reinforcement-An investigation", Struct., 7, 126-137. https://doi.org/10.1016/j.istruc.2016.06.003
  29. Kara, F.I. and Dundar, C. (2012), "Prediction of deflection of high strength steel fiber reinforced concrete beams and columns", Comput. Concrete, 9(2), 133-151. https://doi.org/10.12989/cac.2012.9.2.133
  30. Karayannis, C.G. (1995), "A numerical approach to steel-fibre reinforced concrete under torsion", Struct. Eng. Rev., 7(2), 83-91. https://doi.org/10.1016/0952-5807(94)00043-Z
  31. Karayannis, C.G. (2000a), "Nonlinear analysis and tests of steelfiber concrete beams in torsion", Struct. Eng. Mech., 9(4), 323-338. https://doi.org/10.12989/sem.2000.9.4.323
  32. Karayannis, C.G. (2000b), "Analysis and experimental study for steel fibre pullout from cementitious matrices", Adv. Compos. Lett., 9(4), 243-255.
  33. Koksal, F., Altun, F., Yigit, I. and Sahin, Y. (2008), "Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes", Constr. Build. Mater., 22(8), 1874-1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017
  34. Kotsovos, G., Zeris, C. and Kotsovos, M. (2007), "The effect of steel fibres on the earthquake-resistant design of reinforced concrete structures", Mater. Struct., 40(1), 175-188. https://doi.org/10.1617/s11527-006-9129-5
  35. Kwak, Y.K., Eberhard, M.O., Kim, W.S. and Kim, J. (2002), "Shear strength of steel siber-reinforced concrete beams without stirrups", ACI Struct., 99(4), 530-538.
  36. Li, Z., Li, F., Chang, T.Y.P. and Mai, Y.W. (1998), "Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers", ACI Mater., 95(5), 564-574.
  37. Manolis, D., Gareis, J., Tsonos, A. and Neal, J. (1997), "Dynamic properties of polypropylene fiber-feinforced concrete slabs", Cement Concrete Compos., 19(4), 341-349. https://doi.org/10.1016/S0958-9465(97)00030-9
  38. Marar, K., Eren, O. and Yitmen, I. (2011), "Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC)", Mater. Res., 14(2), 239-247. https://doi.org/10.1590/S1516-14392011005000042
  39. Mohammadi, Y., Singh, S.P. and Kaushik, S.K. (2008), "Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state", Constr. Build. Mater., 22(5), 956-965. https://doi.org/10.1016/j.conbuildmat.2006.12.004
  40. Naaman, A.E. (2003), "Engineered steel fibers with optimal properties for reinforcement of cement composites", Adv. Concrete Tech., 1(3), 241-252. https://doi.org/10.3151/jact.1.241
  41. Narayanan, R. and Darwish, I.Y.S. (1987), "Use of steel fibers as shear reinforcement", ACI Struct., 84(3), 216-227.
  42. Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel-fiber reinforced concrete under compression", Cement Concrete Compos., 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  43. Nehdi, M., Abbas, S. and Soliman, A. (2015), "Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages", Eng. Struct., 101(1), 733-742. https://doi.org/10.1016/j.engstruct.2015.07.012
  44. Nili, M. and Afroughsabet, V. (2012), "Property assessment of steel-fibre reinforced concrete made with silica fume", Constr. Build. Mater., 28, 664-669. https://doi.org/10.1016/j.conbuildmat.2011.10.027
  45. Oliveira Junior, L.A., Borges, V.E.S, Danin, A.R., Machado, D.V.R., Araujo, D.L., Debs M.K.E. and Rodrigues, P.F. (2010), "Stress-strain curves for steel fiber-reinforced concrete in compression", Rev. Mater., 15(2), 60-266.
  46. Padmarajaiah, S.K. and Ramaswamy, A. (2001), "Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear", ACI Struct., 98(5), 752-761.
  47. Pawade, P.Y., Nagarnaik, P.B. and Pande, A.M. (2011), "Performance of steel fiber on standard strength concrete in compression", Civil Struct. Eng., 2(2), 483-492.
  48. RILEM TC 162-TDF (2003), "Test and design methods for steel fibre reinforced concrete, ${\sigma}$-${\varepsilon}$ design method. Final recommendation", Mater. Struct., 36(262), 560-567. https://doi.org/10.1617/14007
  49. Singh, H. (2015), "Flexural modeling of steel fiber-reinforced concrete members: Analytical investigations", Pract. Period. Struct. Des. Constr., 20(4), 04014046. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000244
  50. Singh, H. (2016), "Flexural modelling of steel-fibre-reinforced concrete member with conventional tensile rebars", Proc. Inst. Civil Eng.: Struct. Build., 169(1), 54-66. https://doi.org/10.1680/stbu.14.00054
  51. Song, P.S. and Hwang, S. (2004), "Mechanical properties of highstrength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  52. Soulioti, D.V., Barkoula, N.M., Paipetis, A. and Matikas, T.E. (2011), "Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete", Strain, 47(1), 535-541. https://doi.org/10.1111/j.1475-1305.2009.00652.x
  53. Spinella, N. (2013), "Shear strength of full-scale steel fibrereinforced concrete beams without stirrups", Comput. Concrete, 11(5), 365-382. https://doi.org/10.12989/cac.2013.11.5.365
  54. Spinella, N., Colajanni, P. and La Mendola, L. (2012), "Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers", ACI Struct., 109(1), 53-64.
  55. Spinella, N., Colajanni, P. and Recupero, A. (2010), "A simple plastic model for shear critical SFRC beams", Struct. Eng., ASCE, 136(4), 390-400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000127
  56. Tan, K.H., Murugappan, K. and Paramasivam, P. (1993), "Shear behavior of steel fiber Reinforced concrete beams", ACI Struct., 90(1), 3-11.
  57. TR63 (2007), Guidance for the Design of Steel-Fibre-Reinforced Concrete, Concrete Society, Camberley, UK.
  58. Tsonos, A.D.G. (2009a), "Steel fiber high-strength reinforced concrete: A new solution for earthquake strengthening of old R/C structures", WIT Tran. Build. Environ., 104(1), 153-164.
  59. Tsonos, A.D.G. (2009b), "Ultra-high-performance fiber reinforced concrete: an innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Tran. Eng. Sci., 64, 273-284.
  60. Unal, O., Demir, F. and Uygunoglu, T. (2007), "Fuzzy logic approach to predict stress-strain curves of steel fiber-reinforced concretes in compression", Build. Environ., 42(10), 3589-3595. https://doi.org/10.1016/j.buildenv.2006.10.023
  61. Wang, Z.L., Wu, J. and Wang, J.G. (2010), "Experimental and numerical analysis on effect of fiber aspect ratio on mechanical properties of SFRC", Constr. Build. Mater., 24(4), 559-565. https://doi.org/10.1016/j.conbuildmat.2009.09.009
  62. Wille, K., El-Tawil, S. and Naaman, A.E. (2014), "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  63. Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
  64. Zeris, C., Vitalis, A. and Kontoyannis, P. (2009), "Experimental investigation of steel fiber reinforced concrete beams without shear reinforcement", Proceedings of the 16th Hellenic Concrete Conference, Pafos, Cyprus.

Cited by

  1. Mechanical and Durability Characteristics of Latex-Modified Fiber-Reinforced Segment Concrete as a Function of Microsilica Content vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/3658125
  2. An Experimental Study on Effects of Bacterial Strain Combination in Fibre Concrete and Self-Healing Efficiency vol.23, pp.10, 2018, https://doi.org/10.1007/s12205-019-1661-2
  3. Influence of Fiber Content on Shear Capacity of Steel Fiber-Reinforced Concrete Beams vol.7, pp.12, 2018, https://doi.org/10.3390/fib7120102
  4. Effective flexural rigidities for RC beams and columns with steel fiber vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.453
  5. Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect vol.8, pp.3, 2018, https://doi.org/10.3390/fib8030019
  6. Experimental Study and Failure Mechanism Analysis of Rubber Fiber Concrete under the Compression-Shear Combined Action vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5554257
  7. Experimental and Numerical Studies on the Negative Flexural Behavior of Steel-UHPC Composite Beams vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/8828175
  8. Effect of medium coarse aggregate on fracture properties of ultra high strength concrete vol.77, pp.1, 2018, https://doi.org/10.12989/sem.2021.77.1.103
  9. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines vol.9, pp.7, 2018, https://doi.org/10.3390/fib9070043