참고문헌
- Bazant, Z.P. and Steffens, A. (2000), "Mathematical model for kinetics of alkali-silica reaction in concrete", Cement Concrete Res., 30(3), 419-428. https://doi.org/10.1016/S0008-8846(99)00270-7
- Bazant, Z.P., Zi, G. and Meyer, C. (2000), "Fracture mechanics of ASR in concretes with waste glass particles of different sizes", J. Eng. Mech., ASCE, 126(3), 226-232. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226)
- Belytschko, T. and Tabbara, M. (1993), "H-adaptive finiteelement methods for dynamic problems, with emphasis on localization", Int. J. Numer. Meth. Eng., 36(24), 4245-4265. https://doi.org/10.1002/nme.1620362409
- Berra, M., Faggiani, G., Mangialardi, T. and Paolini, A.E. (2010), "Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction", Cement Concrete Res., 40(9), 1403-1409. https://doi.org/10.1016/j.cemconres.2010.05.002
- Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI J. Proc., 60(1), 51-74.
- Capra, B. and Bournazel, J.P. (1998), "Modeling of induced mechanical effects of alkali-aggregate reactions", Cement Concrete Res., 28(2), 251-260. https://doi.org/10.1016/S0008-8846(97)00261-5
- Devloo, P. (1991), "A three-dimensional adaptive finite element strategy", Comput. Struct., 38(2), 121-130. https://doi.org/10.1016/0045-7949(91)90091-Y
- Diamond, S. and Thaulow, N. (1974), "A study of expansion due to alkali-silica reaction as conditioned by the grain size of the reactive aggregate", Cement Concrete Res., 4(4), 591-607. https://doi.org/10.1016/0008-8846(74)90009-X
- Dumstorff, P. and Meschke, G. (2007), "Crack propagation criteria in the framework of X-FEM-based structural analyses", Int. J. Numer. Anal. Meth. Geomech., 31(2), 239-259. https://doi.org/10.1002/nag.560
- Gasser, T.C. and Holzapfel, G.A. (2006), "3d crack propagation in unreinforced concrete.: A two-step algorithm for tracking 3d crack paths", Comput. Meth. Appl. Mech. Eng., 195(37), 5198-5219. https://doi.org/10.1016/j.cma.2005.10.023
- Haghighat, E. and Pietruszczak, S. (2015), "On modeling of discrete propagation of localized damage in cohesive-frictional materials", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1774-1790. https://doi.org/10.1002/nag.2368
- Haghighat, E. and Pietruszczak, S. (2016), "On modeling of fractured media using an enhanced embedded discontinuity approach", Ext. Mech. Lett., 6, 10-22. https://doi.org/10.1016/j.eml.2015.11.001
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
- Jager, P., Steinmann, P. and Kuhl, E. (2008), "Modeling threedimensional crack propagation-A comparison of crack path tracking strategies", Int. J. Numer. Meth. Eng., 76(9), 1328-1352. https://doi.org/10.1002/nme.2353
- Larive, C. (1998), "Apports combines de l'experimentation et de la modelisation a la comprehension de l‟alcali reaction et de ses effets mecaniques.", Labratorie Central des Ponts et Chaousses (LCPC), Paris, France.
- Leger, P., Cote, P. and Tinawi, R. (1996), "Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams", Comput. Struct., 60(4), 601-611. https://doi.org/10.1016/0045-7949(95)00440-8
- Linder, C. and Armero, F. (2007), "Finite elements with embedded strong discontinuities for the modeling of failure in solids", Int. J. Numer. Meth. Eng., 72(12), 1391-1433. https://doi.org/10.1002/nme.2042
- Manzoli, O.L. and Shing, P.B. (2006), "A general technique to embed non-uniform discontinuities into standard solid finite elements", Comput. Struct., 84(10), 742-757. https://doi.org/10.1016/j.compstruc.2005.10.009
- Mariani, S. and Perego, U. (2003), "Extended finite element method for quasi-brittle fracture", Int. J. Numer. Meth. Eng., 58(1), 103-126. https://doi.org/10.1002/nme.761
- Moallemi, S. and Pietruszczak, S. (2017), "Analysis of localized fracture in 3D reinforced concrete structures using volume averaging technique", Finite Elem. Anal. Des., 125, 41-52. https://doi.org/10.1016/j.finel.2016.10.004
- Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Multon, S., Cyr, M., Sellier, A., Leklou, N. and Petit, L. (2008), "Coupled effects of aggregate size and alkali content on ASR expansion", Cement Concrete Res., 38(3), 350-359. https://doi.org/10.1016/j.cemconres.2007.09.013
- Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals", Int. J. Numer. Meth. Eng., 39(21), 3575-3600. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
- Oliver, J., Huespe, A.E. and Sanchez, P.J. (2006), "A comparative study on finite elements for capturing strong discontinuties: EFEM vs X-FEM", Comput. Meth. Appl. Mech. Eng., 195(37), 4732-4752. https://doi.org/10.1016/j.cma.2005.09.020
- Pan, J. Feng, Y., Jin, F., Zhang, C. and Owen, D.R.J. (2014), "Comparison of different fracture modelling approaches to gravity dam failure", Eng. Comput., 31(1), 18-32. https://doi.org/10.1108/EC-04-2012-0091
- Pan, J., Feng, Y., Jin, F. and Zhang, C. (2013), "Numerical prediction of swelling in concrete arch dams affected by alkaliaggregate reaction", Eur. J. Environ. Civil Eng., 17(4), 231-247. https://doi.org/10.1080/19648189.2013.771112
- Pan, J., Feng, Y., Wang, J., Sun, Q., Zhang, C. and Owen, D. (2012), "Modeling of alkali-silica reaction in concrete: a review", Front. Struct. Civil Eng., 6(1), 1-18.
- Pan, J., Zhang, C., Xu, Y. and Jin, F. (2011), "A comparative study of the different procedures for seismic cracking analysis of concrete dams", Soil Dyn. Earthq. Eng., 31(11), 1594-1606. https://doi.org/10.1016/j.soildyn.2011.06.011
- Pietruszczak, S. (1996), "On the mechanical behaviour of concrete subjected to alkali-aggregate reaction", Comput. Struct., 58(6), 1093-1097. https://doi.org/10.1016/0045-7949(95)00228-6
- Pietruszczak, S. (1999), "On homogeneous and localized deformation in water-infiltrated soils", Int. J. Damage Mech., 8(3), 233-253. https://doi.org/10.1177/105678959900800302
- Pietruszczak, S. and Haghighat, E. (2013), "Assessment of slope stability in cohesive soils due to a rainfall", Int. J. Numer. Anal. Meth. Geomech., 37(18), 3278-3292. https://doi.org/10.1002/nag.2193
- Pietruszczak, S. and Mroz, Z. (1981), "Finite-element analysis of deformation of strain-softening materials", Int. J. Numer. Meth. Eng., 17(3), 327-334. https://doi.org/10.1002/nme.1620170303
- Pietruszczak, S., Ushaksaraei, R. and Gocevski, V. (2013), "Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures", Comput. Concrete, 12(5), 627-650. https://doi.org/10.12989/cac.2013.12.5.627
- Sancho, J.M., Planas, J., Cendon, D.A., Reyes, E. and Galvez, J.C. (2007), "An embedded crack model for finite element analysis of concrete fracture", Eng. Fract. Mech., 74 (1), 75-86. https://doi.org/10.1016/j.engfracmech.2006.01.015
- Saouma, V. and Perotti, L. (2006), "Constitutive model for alkaliaggregate reactions", ACI Mater. J., 103(3), 194-202.
- Sellier, A., Bourdarot, E., Multon, S., Cyr, M. and Grimal, E. (2009), "Combination of structural monitoring and laboratory tests for assessment of alkali-aggregate reaction swelling: Application to gate structure dam", ACI Mater. J., 106(3), 281-290.
- Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuities induced by strain-softening in rateindependent inelastic solids", Comput. Mech., 12(5), 277-296. https://doi.org/10.1007/BF00372173
- Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for three-dimensional crack modelling", Int. J. Numer. Meth. Eng., 48(11), 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
- Swamy, R.N. and Al-Asali, M. (1990), "Control of alkali-silica reaction in reinforced concrete beams", ACI Mater. J., 87(1), 38-46.
- Ulm, F.J., Coussy, O., Li, K.F. and Larive, C. (2000), "Thermochemo-mechanics of ASR expansion in concrete structures", J. Eng. Mech., ASCE, 126 (3), 233-242. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(233)
- Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
- Winkler, B., Hofstetter, G. and Niederwanger, G. (2001), "Experimental verification of a constitutive model for concrete cracking", Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 215(2), 75-86. https://doi.org/10.1243/0957650011536589
- Winnicki, A., Serega, S. and Norys, F. (2014), "Chemoplastic modeliing of alkali-silica reaction (ASR)", Comput. Model. Concrete Struct. (EURO-C), 2, 765-774.
- Zienkiewicz, O.C., Huang, M.S. and Pastor, M. (1995), "Localization problems in plasticity using finite-elements with adaptive remeshing", Int. J. Numer. Anal. Meth. Geomech., 19(2), 127-148. https://doi.org/10.1002/nag.1610190205