DOI QR코드

DOI QR Code

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S. (Department of Civil Engineering, McMaster University) ;
  • Pietruszczak, S. (Department of Civil Engineering, McMaster University)
  • Received : 2017.06.12
  • Accepted : 2018.04.04
  • Published : 2018.07.25

Abstract

In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

Keywords

References

  1. Bazant, Z.P. and Steffens, A. (2000), "Mathematical model for kinetics of alkali-silica reaction in concrete", Cement Concrete Res., 30(3), 419-428. https://doi.org/10.1016/S0008-8846(99)00270-7
  2. Bazant, Z.P., Zi, G. and Meyer, C. (2000), "Fracture mechanics of ASR in concretes with waste glass particles of different sizes", J. Eng. Mech., ASCE, 126(3), 226-232. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226)
  3. Belytschko, T. and Tabbara, M. (1993), "H-adaptive finiteelement methods for dynamic problems, with emphasis on localization", Int. J. Numer. Meth. Eng., 36(24), 4245-4265. https://doi.org/10.1002/nme.1620362409
  4. Berra, M., Faggiani, G., Mangialardi, T. and Paolini, A.E. (2010), "Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction", Cement Concrete Res., 40(9), 1403-1409. https://doi.org/10.1016/j.cemconres.2010.05.002
  5. Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI J. Proc., 60(1), 51-74.
  6. Capra, B. and Bournazel, J.P. (1998), "Modeling of induced mechanical effects of alkali-aggregate reactions", Cement Concrete Res., 28(2), 251-260. https://doi.org/10.1016/S0008-8846(97)00261-5
  7. Devloo, P. (1991), "A three-dimensional adaptive finite element strategy", Comput. Struct., 38(2), 121-130. https://doi.org/10.1016/0045-7949(91)90091-Y
  8. Diamond, S. and Thaulow, N. (1974), "A study of expansion due to alkali-silica reaction as conditioned by the grain size of the reactive aggregate", Cement Concrete Res., 4(4), 591-607. https://doi.org/10.1016/0008-8846(74)90009-X
  9. Dumstorff, P. and Meschke, G. (2007), "Crack propagation criteria in the framework of X-FEM-based structural analyses", Int. J. Numer. Anal. Meth. Geomech., 31(2), 239-259. https://doi.org/10.1002/nag.560
  10. Gasser, T.C. and Holzapfel, G.A. (2006), "3d crack propagation in unreinforced concrete.: A two-step algorithm for tracking 3d crack paths", Comput. Meth. Appl. Mech. Eng., 195(37), 5198-5219. https://doi.org/10.1016/j.cma.2005.10.023
  11. Haghighat, E. and Pietruszczak, S. (2015), "On modeling of discrete propagation of localized damage in cohesive-frictional materials", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1774-1790. https://doi.org/10.1002/nag.2368
  12. Haghighat, E. and Pietruszczak, S. (2016), "On modeling of fractured media using an enhanced embedded discontinuity approach", Ext. Mech. Lett., 6, 10-22. https://doi.org/10.1016/j.eml.2015.11.001
  13. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
  14. Jager, P., Steinmann, P. and Kuhl, E. (2008), "Modeling threedimensional crack propagation-A comparison of crack path tracking strategies", Int. J. Numer. Meth. Eng., 76(9), 1328-1352. https://doi.org/10.1002/nme.2353
  15. Larive, C. (1998), "Apports combines de l'experimentation et de la modelisation a la comprehension de l‟alcali reaction et de ses effets mecaniques.", Labratorie Central des Ponts et Chaousses (LCPC), Paris, France.
  16. Leger, P., Cote, P. and Tinawi, R. (1996), "Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams", Comput. Struct., 60(4), 601-611. https://doi.org/10.1016/0045-7949(95)00440-8
  17. Linder, C. and Armero, F. (2007), "Finite elements with embedded strong discontinuities for the modeling of failure in solids", Int. J. Numer. Meth. Eng., 72(12), 1391-1433. https://doi.org/10.1002/nme.2042
  18. Manzoli, O.L. and Shing, P.B. (2006), "A general technique to embed non-uniform discontinuities into standard solid finite elements", Comput. Struct., 84(10), 742-757. https://doi.org/10.1016/j.compstruc.2005.10.009
  19. Mariani, S. and Perego, U. (2003), "Extended finite element method for quasi-brittle fracture", Int. J. Numer. Meth. Eng., 58(1), 103-126. https://doi.org/10.1002/nme.761
  20. Moallemi, S. and Pietruszczak, S. (2017), "Analysis of localized fracture in 3D reinforced concrete structures using volume averaging technique", Finite Elem. Anal. Des., 125, 41-52. https://doi.org/10.1016/j.finel.2016.10.004
  21. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  22. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  23. Multon, S., Cyr, M., Sellier, A., Leklou, N. and Petit, L. (2008), "Coupled effects of aggregate size and alkali content on ASR expansion", Cement Concrete Res., 38(3), 350-359. https://doi.org/10.1016/j.cemconres.2007.09.013
  24. Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals", Int. J. Numer. Meth. Eng., 39(21), 3575-3600. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
  25. Oliver, J., Huespe, A.E. and Sanchez, P.J. (2006), "A comparative study on finite elements for capturing strong discontinuties: EFEM vs X-FEM", Comput. Meth. Appl. Mech. Eng., 195(37), 4732-4752. https://doi.org/10.1016/j.cma.2005.09.020
  26. Pan, J. Feng, Y., Jin, F., Zhang, C. and Owen, D.R.J. (2014), "Comparison of different fracture modelling approaches to gravity dam failure", Eng. Comput., 31(1), 18-32. https://doi.org/10.1108/EC-04-2012-0091
  27. Pan, J., Feng, Y., Jin, F. and Zhang, C. (2013), "Numerical prediction of swelling in concrete arch dams affected by alkaliaggregate reaction", Eur. J. Environ. Civil Eng., 17(4), 231-247. https://doi.org/10.1080/19648189.2013.771112
  28. Pan, J., Feng, Y., Wang, J., Sun, Q., Zhang, C. and Owen, D. (2012), "Modeling of alkali-silica reaction in concrete: a review", Front. Struct. Civil Eng., 6(1), 1-18.
  29. Pan, J., Zhang, C., Xu, Y. and Jin, F. (2011), "A comparative study of the different procedures for seismic cracking analysis of concrete dams", Soil Dyn. Earthq. Eng., 31(11), 1594-1606. https://doi.org/10.1016/j.soildyn.2011.06.011
  30. Pietruszczak, S. (1996), "On the mechanical behaviour of concrete subjected to alkali-aggregate reaction", Comput. Struct., 58(6), 1093-1097. https://doi.org/10.1016/0045-7949(95)00228-6
  31. Pietruszczak, S. (1999), "On homogeneous and localized deformation in water-infiltrated soils", Int. J. Damage Mech., 8(3), 233-253. https://doi.org/10.1177/105678959900800302
  32. Pietruszczak, S. and Haghighat, E. (2013), "Assessment of slope stability in cohesive soils due to a rainfall", Int. J. Numer. Anal. Meth. Geomech., 37(18), 3278-3292. https://doi.org/10.1002/nag.2193
  33. Pietruszczak, S. and Mroz, Z. (1981), "Finite-element analysis of deformation of strain-softening materials", Int. J. Numer. Meth. Eng., 17(3), 327-334. https://doi.org/10.1002/nme.1620170303
  34. Pietruszczak, S., Ushaksaraei, R. and Gocevski, V. (2013), "Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures", Comput. Concrete, 12(5), 627-650. https://doi.org/10.12989/cac.2013.12.5.627
  35. Sancho, J.M., Planas, J., Cendon, D.A., Reyes, E. and Galvez, J.C. (2007), "An embedded crack model for finite element analysis of concrete fracture", Eng. Fract. Mech., 74 (1), 75-86. https://doi.org/10.1016/j.engfracmech.2006.01.015
  36. Saouma, V. and Perotti, L. (2006), "Constitutive model for alkaliaggregate reactions", ACI Mater. J., 103(3), 194-202.
  37. Sellier, A., Bourdarot, E., Multon, S., Cyr, M. and Grimal, E. (2009), "Combination of structural monitoring and laboratory tests for assessment of alkali-aggregate reaction swelling: Application to gate structure dam", ACI Mater. J., 106(3), 281-290.
  38. Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuities induced by strain-softening in rateindependent inelastic solids", Comput. Mech., 12(5), 277-296. https://doi.org/10.1007/BF00372173
  39. Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for three-dimensional crack modelling", Int. J. Numer. Meth. Eng., 48(11), 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  40. Swamy, R.N. and Al-Asali, M. (1990), "Control of alkali-silica reaction in reinforced concrete beams", ACI Mater. J., 87(1), 38-46.
  41. Ulm, F.J., Coussy, O., Li, K.F. and Larive, C. (2000), "Thermochemo-mechanics of ASR expansion in concrete structures", J. Eng. Mech., ASCE, 126 (3), 233-242. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(233)
  42. Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
  43. Winkler, B., Hofstetter, G. and Niederwanger, G. (2001), "Experimental verification of a constitutive model for concrete cracking", Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 215(2), 75-86. https://doi.org/10.1243/0957650011536589
  44. Winnicki, A., Serega, S. and Norys, F. (2014), "Chemoplastic modeliing of alkali-silica reaction (ASR)", Comput. Model. Concrete Struct. (EURO-C), 2, 765-774.
  45. Zienkiewicz, O.C., Huang, M.S. and Pastor, M. (1995), "Localization problems in plasticity using finite-elements with adaptive remeshing", Int. J. Numer. Anal. Meth. Geomech., 19(2), 127-148. https://doi.org/10.1002/nag.1610190205