DOI QR코드

DOI QR Code

New Design Approach for Grid-Current-Based Active Damping of LCL Filter Resonance in Grid-Connected Converters

  • Gaafar, Mahmoud A. (APEARC, Faculty of Engineering, Aswan University) ;
  • Dousoky, Gamal M. (Electrical Engineering Dept., Minia University) ;
  • Ahmed, Emad M. (Dept. of Electrical Engineering, Jouf University) ;
  • Shoyama, Masahito (Graduate School of Information Science and Electrical Engineering, Kyushu University) ;
  • Orabi, Mohamed (APEARC, Faculty of Engineering, Aswan University)
  • Received : 2017.08.29
  • Accepted : 2018.03.27
  • Published : 2018.07.20

Abstract

This paper investigates the active damping of grid-connected LCL filter resonance using high-pass filter (HPF) of the grid current. An expression for such HPF is derived in terms of the filter components. This expression facilitates a general study of the actively damped filter behavior in the discrete time domain. Limits for the HPF parameters are derived to avoid the excitation of unstable open loop poles since such excitation can reduce both the damping performance and the system robustness. Based on this study, straightforward co-design steps for the active damping loop along with the fundamental current regulator are proposed. A numerical example along with simulation and experimental results are presented to verify the theoretical analyses.

Keywords

References

  1. W. Weimin, Y. Liu, Y. He, H. S. Chung, M. Liserre, and F. Blaabjerg, "Damping methods for resonances caused by LCL-filter-based current-controlled grid-tied power inverters: An overview." IEEE Trans. Ind. Electron., Vol. 64, No. 9, pp 7402-74013 Sep. 2017. https://doi.org/10.1109/TIE.2017.2714143
  2. J. Sampath and M. Hanif, "Generalized LCL-filter design algorithm for grid-connected voltage-source inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 3, pp 1905-1915, Mar. 2017. https://doi.org/10.1109/TIE.2016.2619660
  3. H. Komurcugil, S. Bayhan, and H. Abu-Rub, "Variable-and fixed-switching-frequency-based HCC methods for grid-connected VSI With active damping and zero steady-state error," IEEE Trans. Ind. Electron., Vol. 64, No. 9, pp. 7009-7018, Sep. 2017. https://doi.org/10.1109/TIE.2017.2686331
  4. F. Wu, B. Sun, K. Zhao, and L. Sun, "Analysis and solution of current zero-crossing distortion with unipolar hysteresis current control in grid-connected inverter," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4450-4457, Oct. 2013. https://doi.org/10.1109/TIE.2012.2217720
  5. F. Wu, L. Zhang, and Q. Wu, "Simple unipolar maximum switching frequency limited hysteresis current control for grid-connected inverter," IET Power Electron., Vol. 7, No. 4, pp. 933-945, Apr. 2014. https://doi.org/10.1049/iet-pel.2013.0284
  6. F. Wu, X. Li, and J. Duan, "Improved elimination scheme of current zero-crossing distortion in unipolar hysteresis current controlled grid-connected inverter," IEEE Trans. Ind. Inform., Vol. 11, No. 5, pp. 1111-1118, Oct. 2015. https://doi.org/10.1109/TII.2015.2470540
  7. F. Wu, F. Feng, L. Luo, J. Duan, and L. Sun, "Sampling period online adjusting-based hysteresis current control without band with constant switching frequency," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 270-277, Jan. 2015. https://doi.org/10.1109/TIE.2014.2326992
  8. X. Hao, X. Yang, T. Liu, L. Huang, and W. Chen, "A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2259-2268, May 2013. https://doi.org/10.1109/TPEL.2012.2218133
  9. H. Komurcugil, S. Ozdemir, I. Sefa, N. Altin, and O. Kukrer, "Sliding-mode control for single-phase grid-connected LCL-filtered VSI with double-band hysteresis scheme," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 864-873, Feb. 2016. https://doi.org/10.1109/TIE.2015.2477486
  10. S. Eren, M. Pahlevaninezhad, A. Bakhshai, and P. K. Jain, "Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter," IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5059-5074, Nov. 2013 https://doi.org/10.1109/TIE.2012.2225399
  11. H. Komurcugil, N. Altin, S. Ozdemir, and I. Sefa, "Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI with LCL filter," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2838-2849, May 2016. https://doi.org/10.1109/TIE.2015.2510984
  12. D. Chen, J. Zhang, and Z. Qian, "An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability," IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 814-823, Feb. 2013. https://doi.org/10.1109/TIE.2012.2205364
  13. J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, "Predictive current control of a voltage source inverter," IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 495-503, Feb. 2007. https://doi.org/10.1109/TIE.2006.888802
  14. A. Bouafia, F. Krim, and J.-P. Gaubert, "Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1984-1992, Jun. 2009. https://doi.org/10.1109/TIE.2009.2014746
  15. X. Fu and S. Li, "Control of single-phase grid-connected converters with LCL filters using recurrent neural network and conventional control methods," IEEE Trans. Power Electron., Vol. 31, No. 7, pp. 5354-5364, Jul. 2015. https://doi.org/10.1109/TPEL.2015.2490200
  16. J. Dannehl, C. Wessels, and F. W. Fuchs, "Limitations of voltage-oriented pi current control of grid-connected PWM rectifiers with LCL filters," IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 380-388, Feb. 2009. https://doi.org/10.1109/TIE.2008.2008774
  17. G. Shen, X. Zhu, J. Zhang, and D. Xu, "A new feedback method for PR current control of lcl-filter-based grid-connected inverter," IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2033-2041, Jun. 2010. https://doi.org/10.1109/TIE.2010.2040552
  18. M. Castilla, J. Miret, J. Matas, L. Garcia de Vicuna, and J. M. Guerrero, "Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4492-4501, Nov. 2009. https://doi.org/10.1109/TIE.2009.2017820
  19. B. Bahrani, M. Vasiladiotis and A. Rufer, "High-order vector control of grid-connected voltage-source converters with LCL-filters," IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2767-2775, Jun. 2014. https://doi.org/10.1109/TIE.2013.2276442
  20. J. Dannehl, M. Liserre, and F. W. Fuchs, "Filter-based active damping of voltage source converters with LCL filter," IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3623-3633, Aug. 2011. https://doi.org/10.1109/TIE.2010.2081952
  21. B. S. Romdhane, M. Naouar, I. B.elkhodja, and E. Monmasson, "Robust active damping methods for LCL filter-based grid-connected converters," IEEE Trans. Power Electron., Vol. 32, No. 9, pp 6739-6750, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2626290
  22. D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter," IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3414-3427, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2279206
  23. A. Aapro, T. Messo, T. Roinila, and T. Suntio, "Effect of active damping on output impedance of three-phase grid-connected converter," IEEE Trans. Ind. Electron., Vol. 64, No. 9, pp. 7532-7541, Sep. 2017 https://doi.org/10.1109/TIE.2017.2696494
  24. R. P-Alzola, M. Liserre, F. Blaabjerg, R. Sebastian, J. Dannehl, and F. W. Fuchs, "Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters," IEEE Trans. Ind. Inform., Vol. 10, No. 1, pp. 43-52, Feb. 2014. https://doi.org/10.1109/TII.2013.2263506
  25. X.Wang, F. Blaabjerg, and P. C. Loh, "Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation," IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4726-4737, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2361853
  26. B. Wang, Y. Xu, Z. Shen, J. Zou, C. Li, and H. Liu, "Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics," IEEE Trans. Ind. Electron., Vol. 64, No. 7, pp. 5428-5439, Jul. 2017. https://doi.org/10.1109/TIE.2017.2674600
  27. C. A. Busada, S. G. Jorge, and J. A. Solsona, "Full-state feedback equivalent controller for active damping in LCL filtered grid connected inverters using a reduced number of sensors," IEEE Trans Ind. Electron., Vol. 62, No. 10, pp. 5993-6002, Oct. 2015. https://doi.org/10.1109/TIE.2015.2424391
  28. J. Kukkola, M. Hinkkanen, and K. Zenger, "Observer-based state-space current controller for a grid converter equipped with an LCL filter: Analytical method for direct discrete-time design," IEEE Trans Ind. Appl., Vol. 51, No. 5, pp. 4079-4090, Sep./Oct. 2015. https://doi.org/10.1109/TIA.2015.2437839
  29. R. Guzman, L. G. de Vicuna, J. Morales, M. Castilla, and J. Miret, "Model-based active damping control for three-phase voltage source inverters with LCL filter," IEEE Trans. Power Electron., Vol. 32, No. 7, pp. 5637-5650, Jul. 2017 https://doi.org/10.1109/TPEL.2016.2605858
  30. L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, "Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability," IEEE Trans. Ind. Electron., Vol. 62, No. 2, pp. 702-710, Feb. 2015. https://doi.org/10.1109/TIE.2014.2336632
  31. X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, "Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method," IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 5247-5259, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2364897
  32. J. Xu, S. Xie, and T. Tang, "Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4746-4758, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290771
  33. C. Dick, S. Richter, M. Rosekeit, J. Rolink, and R. De Doncker, "Active damping of LCL resonance with minimum sensor effort by means of a digital infinite impulse response filter," in Proc. EPE 2007, pp. 1-8, 2007.
  34. M. Hanif, V. Khadkikar, W. Xiao, and J. L. Kirtley, "Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems," IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2795-2803, Jun. 2014. https://doi.org/10.1109/TIE.2013.2274416
  35. X. Wang, F. Blaabjerg, and P. Chiang Loh, "Gridcurrent-feedback active damping for LCL resonance in grid-connected voltage source converters," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 213-223, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2411851
  36. M. A. Gaafar, G. M. Dousoky, E. M. Ahmed, M. Shoyama, "Systematic design of grid-current-based active damping for grid-connected LCL filters," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017.
  37. G. F. Franklin, J. D. Powell, and M. L Workman, Digital Control of Dynamic Systems, 2nd ed., California: Addison Wesley Longman, Inc., p. 461, 1998.