DOI QR코드

DOI QR Code

Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability

  • Kim, Hyeongmin (College of Pharmacy, Chung-Ang University) ;
  • Lee, Jong Hyuk (Department of Pharmaceutical Engineering, College of Life and Health Sciences, Hoseo University) ;
  • Kim, Jee Eun (Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Kim, Young Su (Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Ryu, Choong Ho (Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Lee, Hong Joo (Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Kim, Hye Min (Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Jeon, Hyojin (College of Pharmacy, Chung-Ang University) ;
  • Won, Hyo-Joong (College of Pharmacy, Chung-Ang University) ;
  • Lee, Ji-Yun (College of Pharmacy, Chung-Ang University) ;
  • Lee, Jaehwi (College of Pharmacy, Chung-Ang University)
  • 투고 : 2017.11.10
  • 심사 : 2017.12.06
  • 발행 : 2018.07.15

초록

Ginsenosides, dammarane-type triterpene saponins obtained from ginseng, have been used as a natural medicine for many years in the Orient due to their various pharmacological activities. However, the therapeutic potential of ginsenosides has been largely limited by the low bioavailability of the natural products caused mainly by low aqueous solubility, poor biomembrane permeability, instability in the gastrointestinal tract, and extensive metabolism in the body. To enhance the bioavailability of ginsenosides, diverse micro-/nano-sized delivery systems such as emulsions, polymeric particles, and vesicular systems have been investigated. The delivery systems improved the bioavailability of ginsenosides by enhancing solubility, permeability, and stability of the natural products. This mini-review aims to provide comprehensive information on the micro-/nano-sized delivery systems for increasing the bioavailability of ginsenosides, which may be helpful for designing better delivery systems to maximize the versatile therapeutic potential of ginsenosides.

키워드

참고문헌

  1. Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, et al. Steamed American ginseng berry: ginsenoside analyses and anticancer activities. J Agric Food Chem 2006;54:9936-42. https://doi.org/10.1021/jf062467k
  2. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, et al. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 2005;28:652-6. https://doi.org/10.1248/bpb.28.652
  3. Rai D, Bhatia G, Sen T, Palit G. Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci 2003;93:458-64. https://doi.org/10.1254/jphs.93.458
  4. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, et al. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 2000;150:41-8. https://doi.org/10.1016/S0304-3835(99)00369-9
  5. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
  6. Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, et al. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 2009;47:2257-68. https://doi.org/10.1016/j.fct.2009.06.013
  7. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  8. Helms S. Cancer prevention and therapeutics: panax ginseng. Altern Med Rev 2004;9:259-74.
  9. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 2010;3:825-31.
  10. Kim BJ, Nah SY, Jeon JH, So I, Kim SJ. Transient receptor potential melastatin 7 channels are involved in ginsenoside Rg3-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol Toxicol 2011;109:233-9. https://doi.org/10.1111/j.1742-7843.2011.00706.x
  11. Yun TK. Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res 2003;523-524:63-74. https://doi.org/10.1016/S0027-5107(02)00322-6
  12. Zhang W, Wang X, Zhang M, Xu M, Tang W, Zhang Y, et al. Intranasal delivery of microspheres loaded with 20 (R)-ginsenoside Rg3 enhances anti-fatigue effect in mice. Curr Drug Deliv 2016.
  13. Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-6. https://doi.org/10.1016/j.intimp.2011.10.023
  14. Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G(1) phase cell cycle arrest in human breast cancer cells is caused by p15 (Ink4B) and p27 (Kip1)-dependent inhibition of cyclin-dependent kinases. Pharm Res-dordr 2009;26:2280-8. https://doi.org/10.1007/s11095-009-9944-9
  15. Jeong A, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Bae H, et al. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. Biol Pharm Bull 2010;33:945-50. https://doi.org/10.1248/bpb.33.945
  16. Ming Y, Chen Z, Chen L, Lin D, Tong Q, Zheng Z, et al. Ginsenoside compound K attenuates metastatic growth of hepatocellular carcinoma, which is associated with the translocation of nuclear factor-kappaB p65 and reduction of matrix metalloproteinase-2/9. Planta Med 2011;77:428-33. https://doi.org/10.1055/s-0030-1250454
  17. Lee BH, Lee SJ, Hur JH, Lee S, Sung JH, Huh JD, et al. In vitro antigenotoxic activity of novel ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1998;64:500-3. https://doi.org/10.1055/s-2006-957501
  18. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301:185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  19. Benishin CG, Lee R, Wang LC, Liu HJ. Effects of ginsenoside Rb1 on central cholinergic metabolism. Pharmacology 1991;42:223-9. https://doi.org/10.1159/000138801
  20. Baek JS, Yeon WG, Lee CA, Hwang SJ, Park JS, Kim DC, et al. Preparation and characterization of mucoadhesive enteric-coating ginsenoside-loaded microparticles. Arch Pharm Res 2015;38:761-8. https://doi.org/10.1007/s12272-014-0395-4
  21. Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice. Arch Toxicol 2008;82:117-23. https://doi.org/10.1007/s00204-007-0224-3
  22. Cai BX, Jin SL, Luo D, Lin XF, Gao J. Ginsenoside Rb1 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Biol Pharm Bull 2009;32:837-41. https://doi.org/10.1248/bpb.32.837
  23. Zhang X, Chen G, Wen L, Yang F, Shao AL, Li X, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci 2013;48:595-603. https://doi.org/10.1016/j.ejps.2013.01.007
  24. Li H, Ye M, Guo H, Tian Y, Zhang J, Zhou J, et al. Biotransformation of 20(S)-protopanaxadiol by mucor spinosus. Phytochemistry 2009;70:1416-20. https://doi.org/10.1016/j.phytochem.2009.07.041
  25. Paek IP, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, et al. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos 2006;27:39-45. https://doi.org/10.1002/bdd.481
  26. Ren HC, Sun JG, Wang GJ, A JY, Xie HT, Zha WB, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS: application of pharmacokinetic study in rats. J Pharmaceut Biomed 2008;48:1476-80. https://doi.org/10.1016/j.jpba.2008.09.045
  27. Han MH, Chen J, Chen SL, Wang XT. Development of a UPLC-ESI-MS/MS assay for 20(S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats. Anal Sci 2010;26:749-53. https://doi.org/10.2116/analsci.26.749
  28. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003;84:187-92. https://doi.org/10.1016/S0378-8741(02)00317-3
  29. Li X, Wang G, Sun J, Hao H, Xiong Y, Yan B, et al. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional Chinese medicine (TCM) in rats. Biol Pharm Bull 2007;30:847-51. https://doi.org/10.1248/bpb.30.847
  30. Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, et al. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal 2010;51:278-83. https://doi.org/10.1016/j.jpba.2009.08.013
  31. Lee PS, Song TW, Sung JH, Moon DC, Song S, Chung YB. Pharmacokinetic characteristics and hepatic distribution of IH-901, a novel intestinal metabolite of ginseng saponin, in rats. Planta Med 2006;72:204-10. https://doi.org/10.1055/s-2005-916201
  32. Qian T, Cai Z, Wong RN, Mak NK, Jiang ZH. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci 2005;816:223-32. https://doi.org/10.1016/j.jchromb.2004.11.036
  33. Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2005;818:167-73. https://doi.org/10.1016/j.jchromb.2004.12.028
  34. Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol 2010;80:947-54. https://doi.org/10.1016/j.bcp.2010.06.023
  35. Qian T, Cai Z, Wong RN, Jiang ZH. Liquid chromatography/mass spectrometric analysis of rat samples for in vivo metabolism and pharmacokinetic studies of ginsenoside Rh2. Rapid Commun Mass Spectrom 2005;19:3549-54. https://doi.org/10.1002/rcm.2232
  36. Li L, Chen X, Li D, Zhong D. Identification of 20(S)-protopanaxadiol metabolites in human liver microsomes and human hepatocytes. Drug Metab Dispos 2011;39:472-83. https://doi.org/10.1124/dmd.110.036723
  37. Hao H, Lai L, Zheng C, Wang Q, Yu G, Zhou X, et al. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship. Drug Metab Dispos 2010;38:1731-9. https://doi.org/10.1124/dmd.110.033845
  38. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys-Condens Mat 2006;18:R635-66. https://doi.org/10.1088/0953-8984/18/41/R01
  39. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23. https://doi.org/10.1016/j.yexmp.2008.12.004
  40. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:102. https://doi.org/10.1186/1556-276X-8-102
  41. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 2000;65:403-18. https://doi.org/10.1016/S0168-3659(99)00222-9
  42. Garg V, Singh H, Bimbrawh S, Singh SK, Gulati M, Vaidya Y, et al. Ethosomes and transfersomes: principles, perspectives and practices. Curr Drug Deliv 2017;14:613-33.
  43. Lin DDL, Chuanling S, Luying W, Jing L, Jing H, Jiandu L. Ginsenoside nanoparticle: a new green drug delivery system. J Nater Chem B 2016;4:529-38. https://doi.org/10.1039/C5TB02305J
  44. Han M, Fu S, Gao JQ, Fang XL. Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulison using parallel artificial membrane permeability assay. Biol Pharm Bull 2009;32:1069-74. https://doi.org/10.1248/bpb.32.1069
  45. Hao F, He Y, Sun Y, Zheng B, Liu Y, Wang X, et al. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate. Saudi J Biol Sci 2016;23:S113-25. https://doi.org/10.1016/j.sjbs.2015.09.024
  46. Li T, Shu YJ, Cheng JY, Liang RC, Dian SN, Lv XX, et al. Pharmacokinetics and efficiency of brain targeting of ginsenosides Rg1 and Rb1 given as Nao-Qing microemulsion. Drug Dev Ind Pharm 2015;41:224-31. https://doi.org/10.3109/03639045.2013.858734
  47. Wei HJ, Yang HH, Chen CH, Lin WW, Chen SC, Lai PH, et al. Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg1, for intramyocardial injection in a rat model with infarcted myocardium. J Control Release 2007;120:27-34. https://doi.org/10.1016/j.jconrel.2007.04.005
  48. Xu LQ, Yu H, Yin SP, Zhang RX, Zhou YD, Li J. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons. J Nanopart Res 2015;17.
  49. Yu H, Teng L, Meng Q, Li Y, Sun X, Lu J, et al. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects. Int J Pharm 2013;450:250-8. https://doi.org/10.1016/j.ijpharm.2013.04.065
  50. Mathiyalagan R, Subramaniyam S, Kim YJ, Kim YC, Yang DC. Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym 2014;112:359-66. https://doi.org/10.1016/j.carbpol.2014.05.098
  51. Chen D, Yu H, Mu H, Li G, Shen Y. Novel multicore niosomes based on double pH-sensitive mixed micelles for Ginsenoside Rh2 delivery. Artif Cells Nanomed Biotechnol 2014;42:205-9. https://doi.org/10.3109/21691401.2013.794358
  52. Zheng Y, Feng Z, You C, Jin Y, Hu X, Wang X, et al. In vitro evaluation of Panax notoginseng Rg1 released from collagen/chitosan-gelatin microsphere scaffolds for angiogenesis. Biomed Eng Online 2013;12:134. https://doi.org/10.1186/1475-925X-12-134
  53. Voruganti S, Qin JJ, Sarkar S, Nag S, Walbi IA, Wang S, et al. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 2015;6:21379-94.
  54. Zhang J, Han X, Li X, Luo Y, Zhao H, Yang M, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine 2012;7:4299-310.
  55. Choi JH, Cho SH, Yun JJ, Yu YB, Cho CW. Ethosomes and transfersomes for topical delivery of ginsenoside Rh1 from red ginseng: characterization and in vitro evaluation. J Nanosci Nanotechno 2015;15:5660-2. https://doi.org/10.1166/jnn.2015.10462
  56. Haijiang Z, Yongjiang W, Yiyu C. Analysis of 'SHENMAI' injection by HPLC/MS/MS. J Pharm Biomed Anal 2003;31:175-83. https://doi.org/10.1016/S0731-7085(02)00565-4
  57. Chang TK, Chen J, Benetton SA. In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab Dispos 2002;30:378-84. https://doi.org/10.1124/dmd.30.4.378
  58. Chen CM, Alli D. Use of fluidized-bed in proliposome manufacturing. J Pharm Sci-us 1987;76:419. https://doi.org/10.1002/jps.2600760517
  59. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. https://doi.org/10.1186/1749-8546-5-20
  60. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev 2003;55:403-19. https://doi.org/10.1016/S0169-409X(02)00226-0
  61. Li F, Feng J, Cheng Q, Zhu W, Jin Y. Delivery of 125I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats. Int J Pharm 2007;328:161-7. https://doi.org/10.1016/j.ijpharm.2006.08.011
  62. Abu Lila AS, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res-dordr 2010;27:1171-83. https://doi.org/10.1007/s11095-010-0110-1
  63. Natarajan V, Krithica N, Madhan B, Sehgal PK. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J Pharm Sci 2011;100:195-205. https://doi.org/10.1002/jps.22266
  64. Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv 2017;14:289-303.
  65. Yang L, Zhang Z, Hou J, Jin X, Ke Z, Liu D, et al. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer. Int J Nanomedicine 2017;12:7653-67. https://doi.org/10.2147/IJN.S144305
  66. Vazquez I, Aguera-Ortiz LF. Herbal products and serious side effects: a case of ginseng-induced manic episode. Acta Psychiatr Scand 2002;105:76-7.
  67. Li W, Zhang X, Xin Y, Xuan Y, Liu J, Li P, et al. Oral subchronic toxicity evaluation of a novel antitumor agent 25-methoxydammarane-3, 12, 20-triol from Panax notoginseng in Sprague-Dawley rats. Regul Toxicol Pharmacol 2016;77:240-51. https://doi.org/10.1016/j.yrtph.2016.03.013
  68. Jadhav KR, Shaikh IM, Ambade KW, Kadam VJ. Applications of microemulsion based drug delivery system. Curr Drug Deliv 2006;3:267-73. https://doi.org/10.2174/156720106777731118
  69. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 2015;5:123-7.
  70. Shruti Rao TB, Rajesh KS, Jha Lalit Lata. . Formulation, optimization and evaluation of microemulsion based gel of Butenafine Hydrochloride for topical delivery by using simplex lattice mixture design. J Pharm Investig 2016;46:1-12. https://doi.org/10.1007/s40005-015-0207-y
  71. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 2012;8:1719-29. https://doi.org/10.1039/C2SM06903B
  72. Velikov KP, Pelan E. Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 2008;4:1964-80. https://doi.org/10.1039/b804863k
  73. Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol 2006;6:2712-35. https://doi.org/10.1166/jnn.2006.441
  74. Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 2011;28:978-85. https://doi.org/10.1007/s11095-010-0309-1
  75. Komaiko JS, McClements DJ. formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Compr Rev Food Sci F 2016;15:331-52. https://doi.org/10.1111/1541-4337.12189
  76. Surjyanarayan Mandal SDM, Chuttani Krishna, Sawant Krutika K, Subudhi Bharat Bhushan. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. J Pharm Investig 2016;46:41-53. https://doi.org/10.1007/s40005-015-0212-1
  77. Liu Z, Zhang Q, Ding L, Li C, Yin Z, Yan G, et al. Preparation procedure and pharmacokinetic study of water-in-oil nanoemulsion of panax notoginseng saponins for improving the oral bioavailability. Curr Drug Deliv 2016;13:600-10. https://doi.org/10.2174/1567201812666150608095517
  78. Imperiale JC, Sosnik A. Nanoparticle-in-Microparticle delivery systems (NiMDS): production, administration routes and clinical potential. J Biomater Tiss Eng 2013;3:22-38. https://doi.org/10.1166/jbt.2013.1064
  79. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 2015;5:442-53. https://doi.org/10.1016/j.apsb.2015.07.003
  80. Li J, Hu M, Xu H, Yu X, Ye F, Wang K, et al. Influence of type and proportion of lyoprotectants on lyophilized ginsenoside Rg3 liposomes. J Pharm Pharmacol 2016;68:1-13. https://doi.org/10.1111/jphp.12489
  81. van den Hoven JM, Nemes R, Metselaar JM, Nuijen B, Beijnen JH, Storm G, et al. Complement activation by PEGylated liposomes containing prednisolone. Eur J Pharm Sci 2013;49:265-71. https://doi.org/10.1016/j.ejps.2013.03.007
  82. Zalba S, Navarro I, Troconiz IF, Tros de Ilarduya C, Garrido MJ. Application of different methods to formulate PEG-liposomes of oxaliplatin: evaluation in vitro and in vivo. Eur J Pharm Biopharm 2012;81:273-80. https://doi.org/10.1016/j.ejpb.2012.02.007
  83. Dobrzynska I, Kotynska J, Figaszewski Z. Changes in electrical charge of phosphatidylcholine and phosphatidylserine liposomal membranes caused by adsorption of monovalent ions. Chem Anal-Warsaw 2007;52:931-44.
  84. Abu-Lila A, Suzuki T, Doi Y, Ishida T, Kiwada H. Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model. J Control Release 2009;134:18-25. https://doi.org/10.1016/j.jconrel.2008.10.018
  85. Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S, et al. D-alpha-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharm 2014;11:3196-209. https://doi.org/10.1021/mp500384d
  86. Zhao LY, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin e-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci-us 2010;99:3552-60. https://doi.org/10.1002/jps.22113
  87. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm 2010;397:164-72. https://doi.org/10.1016/j.ijpharm.2010.06.034
  88. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 2010;1:374-80. https://doi.org/10.4103/0110-5558.76435
  89. Rizwana Khan RI. Niosomes: a potential tool for novel drug delivery. J Pharm Investig 2016;46:195-204. https://doi.org/10.1007/s40005-016-0249-9
  90. Chen D, Sun K, Mu H, Tang M, Liang R, Wang A, et al. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system. Int J Nanomedicine 2012;7:2621-30.

피인용 문헌

  1. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study vol.9, pp.71, 2018, https://doi.org/10.18632/oncotarget.26035
  2. Synthesis of Loureirin B-Loaded Nanoliposomes for Pharmacokinetics in Rat Plasma vol.4, pp.4, 2019, https://doi.org/10.1021/acsomega.9b00119
  3. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery vol.11, pp.6, 2018, https://doi.org/10.3390/pharmaceutics11060290
  4. Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism vol.9, pp.10, 2018, https://doi.org/10.3390/biom9100618
  5. Supramolecular host-guest interactions of pseudoginsenoside F11 with β- and γ-cyclodextrin: Spectroscopic/spectrometric and computational studies vol.1195, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2019.05.134
  6. Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for Enhanced Antitumor Efficacy on Prostate Cancer: An in vitro Study vol.14, pp.None, 2018, https://doi.org/10.2147/dddt.s261027
  7. Molecular Drug Discovery of Single Ginsenoside Compounds as a Potent Bruton’s Tyrosine Kinase Inhibitor vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093065
  8. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines vol.8, pp.30, 2018, https://doi.org/10.1039/d0tb01260b
  9. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells vol.68, pp.32, 2018, https://doi.org/10.1021/acs.jafc.0c03698
  10. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications vol.159, pp.None, 2020, https://doi.org/10.1016/j.phrs.2020.105031
  11. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers vol.30, pp.None, 2021, https://doi.org/10.1016/j.cjche.2020.11.012
  12. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  13. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide vol.13, pp.7, 2018, https://doi.org/10.3390/pharmaceutics13071022
  14. Physical, chemical, and biological characterization of ginsenoside F1 incorporated in nanostructured lipid carrier vol.45, pp.8, 2021, https://doi.org/10.1111/jfbc.13860
  15. Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations vol.14, pp.10, 2018, https://doi.org/10.3390/ph14100999