DOI QR코드

DOI QR Code

Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging

  • Park, Ji Yong (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • Received : 2018.06.21
  • Accepted : 2018.06.29
  • Published : 2018.06.30

Abstract

Molecular imaging refers to detect the biochemical process in living organisms at the cellular and molecular levels and to quantify them. Due to several advantages of nanomaterials, various molecular images using nanomaterials are being tried. Attempts have been made to combine nanoparticles, known as micro- or nanosized nanomaterials, with radioactive isotopes for molecular imaging probe. The radiolabeled nanoparticles will expend the molecular imaging due to nanoparticle's size-dependent nature. In particular, iron oxide nanoparticles can be used for magnetic resonance imaging, can be adjusted in size, easily functionalized, and biocompatible, making it a very good platform for molecular imaging. In addition, iron oxide nanoparticles may be the best example for a new approach to molecular imaging techniques. In this paper, we introduce various methods for preparation of iron oxide nanoparticle combined with radioisotope starting from various synthesis methods of iron oxide nanoparticles to utilize iron oxide nanoparticles as a platform for molecular imaging through radioactive labeling.

Keywords

References

  1. Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V. Quantum dot-loaded monofunctionalized DNA icosahedra for singleparticle tracking of endocytic pathways. Nat Nanotech 2016;11:1112-1119.. https://doi.org/10.1038/nnano.2016.150
  2. Wichner SM, Mann VR, Powers AS, Segal MA, Mir M, Bandaria JN. Covalent protein labeling and improvedsingle-molecule optical properties of aqueous CdSe/CdS quantum dots. ACS Nano 2017;11:6773-6781. https://doi.org/10.1021/acsnano.7b01470
  3. Song J, Yang X, Yang Z, Lin L, Liu Y, Zhou Z. Rational design of branched nanoporous gold nanoshells withenhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano 2017;11:6102-6113. https://doi.org/10.1021/acsnano.7b02048
  4. Campbell JL, SoRelle ED, Ilovich O, Liba O, James ML, Qiu Z. Multimodal assessment of SERS nanoparticle biodistribution post ingestion reveals new potential for clinical translation of Raman imaging. Biomaterials 2017;135:42-52. https://doi.org/10.1016/j.biomaterials.2017.04.045
  5. Park HS, Nam SH, Kim J, Shin HS, Suh YD, Hong KS. Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Scientific reports 2016;6:27407. https://doi.org/10.1038/srep27407
  6. Wu T, Johnsen B, Qin Z, Morimoto M, Baillie D, Irie M. Two-colour fluorescent imaging in organisms using self-assembled nano-systems of upconverting nanoparticles and molecular switches. Nanoscale 2015;7:11263-11266. https://doi.org/10.1039/C5NR03058G
  7. Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguna-Torres J. Exploiting the metalchelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomalnanomedicines. ACS nano 2016;10:10294-10307. https://doi.org/10.1021/acsnano.6b05935
  8. Duan Y, Wei L, Petryk J, Ruddy TD. Formulation, characterization and tissue distribution of a novel pHsensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. Int J Nanomedicine 2016;11:5697-5708. https://doi.org/10.2147/IJN.S111274
  9. Huang Y, Coman D, Hyder F, Ali MM. Dendrimerbased responsive MRI contrast agents (G1–G4) forbiosensor imaging of redundant deviation in shifts (BIRDS). Bioconjugate chem 2015;26:2315-2323. https://doi.org/10.1021/acs.bioconjchem.5b00568
  10. Mendoza-Nava H, Ferro-Flores G, Ramirez FdM, Ocampo-Garcia B, Santos-Cuevas C, Azorin-VegaE. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu–Dendrimer-AuNP–Folate–Bombesin nanoprobe located inside cancer cells. Mol Imaging 2017;16:1536012117704768.
  11. Budhathoki-Uprety J, Langenbacher RE, Jena PV, Roxbury D, Heller DA. A Carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS nano 2017;11:3875-3982. https://doi.org/10.1021/acsnano.7b00176
  12. Rainone P, Riva B, Belloli S, Sudati F, Ripamonti M, Verderio P, et al. Development of $^{99m}Tc-radiolabeled$ nanosilica for targeted detection of HER2-positive breast cancer. Int J Nanomedicine 2017;12:3447-3461. https://doi.org/10.2147/IJN.S129720
  13. Gwyther MM, Field E. Aggregated 99m Tc-labelled albumin for lung scintiscanning. Int J Appl radiat isot1966;17:485-486. https://doi.org/10.1016/0020-708X(66)90082-2
  14. Liu X, Chen C, Zhao Y, Jia B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomat 2013;2013.
  15. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
  16. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics 1981;17:1247-1248. https://doi.org/10.1109/TMAG.1981.1061188
  17. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat mat 2004;3:891-895. https://doi.org/10.1038/nmat1251
  18. Lassenberger A, Grunewald T, Van Oostrum P, Rennhofer H, Amenitsch H, Zirbs R, et al. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle x-ray scattering. Chem Mater 2017;29:4511-4522. https://doi.org/10.1021/acs.chemmater.7b01207
  19. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, et al. Synthesis of phase-pureand monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015;7:11142-11154. https://doi.org/10.1039/C5NR01651G
  20. Salinas B, Ruiz-Cabello J, Morales M, Herranz F. Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials 2012;1:166-172. https://doi.org/10.1680/bbn.12.00001
  21. Wang W-W, Zhu Y-J, Ruan M-L. Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 2007;9:419-426. https://doi.org/10.1007/s11051-005-9051-8
  22. Alexander V. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 1995;95:273-342. https://doi.org/10.1021/cr00034a002
  23. Lahooti A, Sarkar S, Laurent S, Shanehsazzadeh S. Dual nano-sized contrast agents in PET/MRI: a systematic review. Contrast Media Mol Imaging 2016;11:428-447. https://doi.org/10.1002/cmmi.1719
  24. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 2012;12:2694-702.
  25. Madru R, Kjellman P, Olsson F, Wingardh K, Ingvar C, Stahlberg F. $^{99m}Tc-labeled$ superparamagnetic iron Oxide Nanoparticles for Multimodality SPECT/MRI of Sentinel Lymph Nodes. J Nucl Med 2012;53:459-463. https://doi.org/10.2967/jnumed.111.092437
  26. Misri R, Meier D, Yung AC, Kozlowski P, Hafeli UO. Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine 2012;8:1007-1016. https://doi.org/10.1016/j.nano.2011.10.013
  27. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOXconjugated, and $^{64}Cu-labeled$ superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011;32:4151-4160. https://doi.org/10.1016/j.biomaterials.2011.02.006
  28. Morin G, Wang Y, Ona-Nguema G, Juillot F, Calas G, Menguy N. EXAFS and HRTEM evidence for As (III)-containing surface precipitates on nanocrystalline magnetite: implications for As sequestration. Langmuir 2009;25:9119-9128. https://doi.org/10.1021/la900655v
  29. Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S. Chelator-free synthesis of a dual-modalityPET/MRI agent. Angew Chem Int Ed 2013;52:13319-13323. https://doi.org/10.1002/anie.201306306
  30. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M. Development of a nano-zirconia based $^{68}Ge/^{68}Ga$ generator for biomedical applications. Nucl Med Biol 2011;38:575-583. https://doi.org/10.1016/j.nucmedbio.2010.10.007
  31. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and invivo dual-modality PET/MR imaging. Adv Mater 2014;26:5119-123. https://doi.org/10.1002/adma.201401372
  32. Pham TN, Lengkeek NA, Greguric I, Kim BJ, Pellegrini PA, Bickley SA. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Int J NanoMed 2017;12:899-909. https://doi.org/10.2147/IJN.S127171
  33. Madru R, Tran TA, Axelsson J, Ingvar C, Bibic A, Stahlberg F. $^{68}Ga-labeled$ superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging 2014;4:60-69.
  34. Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, Grafstrom G. Combined magnetomotive ultrasound, PET/CT, and MR imaging of $^{68}Ga-labelled$ superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Rep 2017;7:4824. https://doi.org/10.1038/s41598-017-04396-z
  35. Pellico J, Ruiz-Cabello J, Saiz-Alia M, Rosario G, Caja S, Montoya M. Fast synthesis and bioconjugation of $^{68}Ga core-doped$ extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging 2016;11:203-210. https://doi.org/10.1002/cmmi.1681
  36. Wong RM, Gilbert DA, Liu K, Louie AY. Rapid sizecontrolled synthesis of dextran-coated, $^{64}Cu-doped$ iron oxide nanoparticles. ACS Nano 2012;6:3461-3467. https://doi.org/10.1021/nn300494k