Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bing, H. and Ma, W. (2011), "Laboratory investigation of the freezing point of saline soil", Cold Reg. Sci. Technol., 67(1), 79-88. https://doi.org/10.1016/j.coldregions.2011.02.008
- Chen, X. (1996), "A "time-space" related design method of freezing wall", J. Coal Sci. Eng., 2(2), 63-66.
- Fattah, M.Y., Al-Saidi, A.A. and Jaber, M.M. (2015), "Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix", Geomech. Eng., 8(1), 113-132. https://doi.org/10.12989/gae.2015.8.1.113
- Grechishchev, S.E., Instanes, A., Sheshin, J.B., Pavlv, A.V. and Grechishcheva, O.V. (2001), "Laboratory investigation of the freezing point of oil-polluted soils", Cold Reg. Sci. Technol., 32(2-3), 183-189. https://doi.org/10.1016/S0165-232X(01)00030-1
- Guan, H., Wang, D., Ma, W., Mu, Y., Wen, Z., Gu, T. and Wang, Y. (2014a), "Study on the freezing characteristics of silty clay under high loading conditions", Cold Reg. Sci. Technol., 110, 26-31.
- Guan, H. (2014b), "Investigation on freezing characteristics of Lanzhou loess under high loading conditions", Ph.D. Disertation, Chinese Academy of Sciences, Beijing, China (in Chinese).
- Karstunen, M., Wiltafsky, C., Krenn, H., Scharinger, F. and Schweiger, H.F. (2006), "Modelling the behaviour of an embankment on soft clay with different constitutive models", J. Numer. Anal. Meth. Geomech., 30(10), 953-982. https://doi.org/10.1002/nag.507
- Kozlowski, T. (2004), "Soil freezing point as obtained on melting", Cold Reg. Sci. Technol., 38, 93-101. https://doi.org/10.1016/j.coldregions.2003.09.001
- Kozlowski, T. (2009), "Some factors affecting supercooling and the equilibrium freezing point in soil-water system", Cold Reg. Sci. Technol., 59(1), 25-33. https://doi.org/10.1016/j.coldregions.2009.05.009
- Kozlowski, T. (2016), "A simple method of obtaining the soil freezing point depression, the unfrozen water content and the pore size distribution curves from the DSC peak maximum temperature", Cold Reg. Sci. Technol., 122, 18-25. https://doi.org/10.1016/j.coldregions.2015.10.009
- Lu, J., Zhang, M., Zhang, X. and Yan, Z. (2017), "Experimental study on unfrozen water content and the freezing temperature during freezing and thawing processes", Chin. J. Rock Mech. Eng., 36(7), 1803-1812 (in Chinese).
- Ma, W., Fang, L. and Qi, J. (2011), "Methodology of study on freeze-thaw cycling induced changes in engineering properties of soils", Proceedings of the 9th International Symposium on Permafrost Engineering, Mirny, Russia, June-July.
- Marwan, A., Zhou, M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004
- Nelson, P.P. (2016), "A framework for the future of urban underground engineering", Tunn. Undergr. Sp. Technol., 55, 32-39. https://doi.org/10.1016/j.tust.2015.10.023
- Parameswaran, V.R. and Mackay, J.R. (1983), "Field measurements of electrical freezing potential in permafrost areas", Proceedings of the 4th International Conference on Permafrost, Fairbanks, Alaska, U.S.A., July.
- Park, D. (2016), "Rate of softening and sensitivity for weakly cemented sensitive clays", Geomech. Eng., 10(6), 827-836. https://doi.org/10.12989/gae.2016.10.6.827
- Qi, J.L., Pieter, A.V. and Cheng, G.D. (2006), "A review of the influence of freeze-thaw cycles on soil geotechnical properties", Permafrost Periglac., 17(3), 245-252. https://doi.org/10.1002/ppp.559
- Sinitsyn, A.O. and Loset, S. (2010), "Equivalent cohesion of frozen saline sandy loams at temperatures close to their freezing point", Soil Mech. Found. Eng., 47(2), 68-73. https://doi.org/10.1007/s11204-010-9091-7
- Suzuki, S. (2004), "Verification of freezing point depression method for measuring matric potential of soil water", Soil Sci. Plant Nutr., 50(8), 1277-1280. https://doi.org/10.1080/00380768.2004.10408604
- Tang, Y., Li, J., Wan, P. and Yang, P. (2014), "Resilient and plastic strain behavior of freezing-thawing mucky clay under subway loading in Shanghai", Nat. Hazards, 72(2), 771-787. https://doi.org/10.1007/s11069-014-1036-4
- Tang, Y., Zhou, J., Hong, J., Yang, P. and Wang, J.X. (2012), "Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing", Bull. Eng. Geol. Environ., 71(2), 309-316. https://doi.org/10.1007/s10064-011-0380-9
- Teltayev, B.B. and Aitbayev, K. (2015), "Modeling of transient temperature distribution in multilayer asphalt pavement", Geomech. Eng., 8(2), 133-152. https://doi.org/10.12989/gae.2015.8.2.133
- Tengborg, P. and Struk, R. (2016), "Development of the use of underground space in Sweden", Tunn. Undergr. Sp. Technol., 55, 339-341. https://doi.org/10.1016/j.tust.2016.01.002
- Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016), "Thermohydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone", Comput. Geotech., 75, 80-92. https://doi.org/10.1016/j.compgeo.2016.01.024
- Wan, X., Lai, Y., Wang, C. (2015), "Experimental study on the freezing temperatures of saline silty soils", Permafrost Periglac., 26(2), 175-187. https://doi.org/10.1002/ppp.1837
- Wang, D., Ma, W., Chang, X. and Wang, A. (2005), "Study on the resistance to deformation of artificially frozen soil in deep alluvium", Cold Reg. Sci. Technol., 42(3), 194-200. https://doi.org/10.1016/j.coldregions.2005.01.006
- Wang, S., Qi, J., Yu, F. and Liu, F. (2016), "A novel modeling of settlement of foundations in permafrost regions", Geomech. Eng., 10(2), 225-245. https://doi.org/10.12989/gae.2016.10.2.225
- Watanabe, K. and Wake, T. (2008), "Hydraulic conductivity in frozen unsaturated soil", Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, U.S.A., June-July.
- Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.E. (2015), "Solute and water effects on soil freezing characteristics based on laboratory experiments", Cold Reg. Sci. Technol., 115, 22-29. https://doi.org/10.1016/j.coldregions.2015.03.007
- Yang, P., Ke, J.M., Wang, J.G., Chow, Y.K. and Zhu, F.B. (2006), "Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation", Comput. Geotech., 33(6-7), 330-340. https://doi.org/10.1016/j.compgeo.2006.07.006
- Yao, X.L., Qi, J.L. and Ma, W. (2009), "Influence of freeze-thaw on the stored free energy in soils", Cold Reg. Sci. Technol., 56(2-3), 115-119. https://doi.org/10.1016/j.coldregions.2008.11.001
- Yazdani, H. and Toufigh, M.M. (2012), "Nonlinear consolidation of soft clays subjected to cyclic loading-Part II: Verification and application", Geomech. Eng., 4(4), 243-249. https://doi.org/10.12989/gae.2012.4.4.243
- Yildiz, A. and Uysal, F. (2015), "Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs", Geomech. Eng., 8(5), 707-726. https://doi.org/10.12989/gae.2015.8.5.707
Cited by
- Evaporation-Induced Water and Solute Coupled Transport in Saline Loess Columns in Closed and Open Systems vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/3781410
- Effect of freeze-thaw on freezing point and thermal conductivity of loess vol.13, pp.5, 2018, https://doi.org/10.1007/s12517-020-5186-2
- Study on Soil-Water Characteristics of Expansive Soil under the Dry-Wet Cycle and Freeze-Thaw Cycle considering Volumetric Strain vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6622370
- Permeability and Microstructure of a Saline Intact Loess after Dry-Wet Cycles vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6653697
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2018, https://doi.org/10.12989/gae.2021.26.3.235