DOI QR코드

DOI QR Code

Parametric study of the convergence of deep tunnels with long term effects: Abacuses

  • Quevedo, Felipe P.M. (Department of Civil Engineering Federal University of Rio Grande do Sul) ;
  • Bernaud, Denise (Department of Civil Engineering Federal University of Rio Grande do Sul)
  • 투고 : 2017.07.27
  • 심사 : 2018.01.06
  • 발행 : 2018.07.20

초록

The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.

키워드

참고문헌

  1. Barla, G., Debernardi, D. and Sterpi, D. (2011), "Time-dependent modeling of tunnels in squeezing conditions", J. Geomech., 12(6), 697-710.
  2. Benamar, I. (1996), "Etude des effets differes dans tunnels profonds", Ph.D. Dissertation, Ecole Nationale des Ponts et Chaussees, Paris, France (in French).
  3. Bernaud, D. (1991), "Tunnels profonds dans les milieu viscoplastiques: Approaches experimentale et numerique", Ph.D. Dissertation, Ecole Nationale des Ponts et Chaussees, Paris, France.
  4. Bernaud, D. and Rousset, G. (1992), "La nouvelle methode implicite pour l'etude du dimensionnement des tunnels", Rev. Franc. Geotech., (60), 5-26 (in French).
  5. Bernaud, D. and Rousset, G. (1993), L'essai de soutenement a convergence controlee: Resultats et modelisation, Proceedings of the International Symposium: Hard Soils-Soft Rocks, Athens, Greece, September.
  6. Bernaud, D., Benamar, I. and Rousset, G. (1994), "La nouvelle methode implicite pour le calcul des tunnels dans les milieux elastoplastiques et viscoplastiques", Rev. Franc. Geotech., (68), 3-19 (in French).
  7. Boidy, E., Bouvard, A. and Pellet, F. (2002), "Back analysis of time-dependent behaviour of a test gallery in claystone", Tunn. Undergr. Sp. Technol., 17(4), 415-424. https://doi.org/10.1016/S0886-7798(02)00066-4
  8. Couto, E.C. (2011), "Um modelo tridimensional para tuneis escavados em rocha reforcada por tirantes passivos", Ph.D. Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese).
  9. Debernardi, D. (2008), "Viscoplastic behavior and design of tunnels", Ph.D. Dissertation, Polytechnic University of Turin, Turin, Italy.
  10. Debernardi, D. and Barla, G. (2009), "New viscoplastic model for design analysis of tunnels in squeezing conditions", Rock Mech. Rock Eng., 42(2), 259-288. https://doi.org/10.1007/s00603-009-0174-6
  11. Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic Burger's material under hydrostatic stress field", Tunn. Undergr. Sp. Technol., 25(4), 297-304. https://doi.org/10.1016/j.tust.2010.01.002
  12. Fiore, P.V., Maghous, D.B. and Campos Filho, A. (2016), "A tridimensional finite elemento approach to model a tunnel with shotcrete and precast concrete", Ibracon Struct. Mater. J., 9(3), 403-413.
  13. Gomes, R.A.M.P. (2006), "Analise tridimensional de tuneis considerando o comportamento dependente do tempo na interacao macico-suporte", Ph.D. Dissertation, Sao Carlos da Universidade de Sao Paulo, Sao Paulo, Brazil (in Portuguese).
  14. Hanafy, E.A. (1981), "Simulation of tunnel excavations in squeezing ground", Ph.D. Dissertation, McMaster University, Hamilton, Canada.
  15. Karami, M. and Fahimifar, A. (2013), A New Time-Dependent Constitutive Model and its Application in Underground Construction, in RapidMiner: Data Mining Use Cases and Business Analytics Applications, 437-440.
  16. Khoshboresh, A.R. (2013), "A Study on deformation of tunnels excavated in fracture rocks", M.Sc. Dissertation, Universite Laval, Quebec, Canada.
  17. Machado, G.M. (2011), "Analise por elementos finitos de macicos escavados por tuneis", M.Sc. Dissertation, Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, Brazil (in Portuguese).
  18. Malan, D.F. (1999), "Time-dependent behavior of deep level tabular excavations in hard rock", Rock Mech. Rock Eng., 32(2), 123-155. https://doi.org/10.1007/s006030050028
  19. Maleki, M. and Mousivand, M. (2014), "Safety evaluation of shallow tunnel based on elastoplastic-viscoplastic analysis", Scientia Iranica Trans. A Civ. Eng., 21(5), 1480.
  20. Masin, D. (2009), "3D modeling of a NATM tunnel in high K0 clay using two different constitutive models", J. Geotech. Geoenviron. Eng., 135(9), 1326-1335. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000017
  21. Mroueh, H. and Shahrour, I. (2003), "A full 3-D finite element analysis of tunneling-adjacent structures interaction", Comput. Geotech., 30(3), 245-253. https://doi.org/10.1016/S0266-352X(02)00047-2
  22. Nomikos, P., Rahmannejad, R. and Sofianos, A. (2011), "Supported axisymmetric tunnels within linear viscoelastic Burgers rocks", Rock Mech. Rock Eng., 44(5), 553-564. https://doi.org/10.1007/s00603-011-0159-0
  23. Pan, Y.W. and Dong, J.J. (1991a), "Time-dependent tunnel convergence-I. Formulation of the model", J. Rock Mech. Min. Sci. Geomech. Abstr., 28(6), 469-475. https://doi.org/10.1016/0148-9062(91)91122-8
  24. Pan, Y.W. and Dong, J.J. (1991b), "Time-dependent tunnel convergence-II. Advance rate and tunnel-support interaction", J. Rock Mech. Min. Sci. Geomech. Abstr., 28(6), 477-488. https://doi.org/10.1016/0148-9062(91)91123-9
  25. Panet,M. (1995), Le Calcul Des Tunnels Par La Methode Convergence-Confinement, Presses de l'ecole Nationale des Ponts et Chaussees, Paris, France (in French).
  26. Quevedo, F.P.M. (2017), "Comportamento a longo prazo de tuneis profundos revestidos com concreto: Modelo em elementos finitos", M.Sc. Disseration, UFRGS, Porto Alegre, Brazil (in Portuguese).
  27. Roatesi, S. (2010), "Analysis of the successive phases of a tunnel excavation with support mounting", Proc. Roman. Acad. Ser. A, 11, 11-18.
  28. Sahli, M., Pellet, F., Boidy, E. and Fabre, G. (2001), "Modeling of viscous behavior of rocks for deep tunnels", Proceedings of the ISRM Regional Symposium, Eurock, Espoo, Finland, June.
  29. Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Timedependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunn. Undergr. Sp. Technol., 38, 348-356. https://doi.org/10.1016/j.tust.2013.07.014
  30. Sterpi, D. and Gioda, G. (2009), "Visco-plastic behavior around advancing tunnels in squeezing rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8
  31. Sulem, J., Panet, M. and Guenot, A. (1987), "An analytical solution for time-dependent displacements in a circular tunnel", J. Rock Mech. Min. Sci. Geomech. Abstr., 24(3), 155-164.
  32. Wang, H.N., Li, Y., Ni, Q., Utili, S., Jiang, M.J. and Liu, F. (2013), "Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock", Rock Mech. Rock Eng., 46(6), 1481-1498. https://doi.org/10.1007/s00603-012-0362-7
  33. Wang, H.N., Utili, S. and Jiang, M.J. (2014), "An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock", J. Rock Mech. Min. Sci., 68, 85-106. https://doi.org/10.1016/j.ijrmms.2014.02.002

피인용 문헌

  1. Tunnel lining load with consideration of the rheological properties of rock mass and concrete vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.053
  2. Experimental research on the effect of water-rock interaction in filling media of fault structure vol.24, pp.5, 2018, https://doi.org/10.12989/gae.2021.24.5.471