DOI QR코드

DOI QR Code

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi (College of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Shemirani, Alireza Bagher (Department of Civil, Water and Environmental Engineering, Shahid Beheshti University) ;
  • Zhu, Zheming (College of Architecture and Environment, Sichuan University)
  • 투고 : 2017.08.23
  • 심사 : 2017.12.23
  • 발행 : 2018.07.20

초록

The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

키워드

참고문헌

  1. Akin M. (2013), "Slope stability problems and back analysis in heavily jointed rock mass: A case study from Manisa, Turkey", Rock Mech. Rock Eng., 46(2), 359-371. https://doi.org/10.1007/s00603-012-0262-x
  2. ASTM, (1971), Standard Method of Test for Splitting Tensile Resistance of Cylindrical Concrete Specimens, ASTM Designation C496-71.
  3. ASTM, (1986), Test Method for Unconfined Compressive Resistance of Intact Rock Core Specimens, ASTM Designation D2938-86.
  4. Bobet, A. (1997), "Fracture coalescence in rock materials: Experimental observations and numerical predictions", Sc.D. Dissertation, Massachusetts Institute of Technology, Cambridge, U.S.A.
  5. Duzgun, H.S.B. and Bhasin, R.K. (2009), "Probabilistic stability evaluation of Oppstadhornet rock slope, Norway", Rock Mech. Rock Eng., 42(5), 729-749 https://doi.org/10.1007/s00603-008-0011-3
  6. Einstein, H.H., Veneziano, D., Baecher, G.B. and O'Reilly, K.J. (1983), "The effect of discontinuity persistence on rock stability", J. Rock Mech. Min. Sci. Geomech. Abstr., 20(5), 227-236. https://doi.org/10.1016/0148-9062(83)90003-7
  7. Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behavior of intermittent rock joints", J. Rock Mech. Min. Sci., 40(5), 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1
  8. Gerges, N.N., Issa, C.A. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Construct. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  9. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal, July.
  10. Gischig, V., Amann, F., Moore, J.R., Loew, S., Eisenbeiss, H. and Stempfhuber, W. (2011), "Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling", Eng. Geol., 118(1-2), 37-53. https://doi.org/10.1016/j.enggeo.2010.11.006
  11. Grenon, M. and Hadjigeorgiou, J. (2008), "A design methodology for rock slopes susceptible to wedge failure using fracture system modeling", Eng. Geol., 96(1-2), 78-93. https://doi.org/10.1016/j.enggeo.2007.10.002
  12. Griffith, A.A. (1921), "The phonomana of rupture and flow in sloids", Philos. Trans. R. Soc. London Ser. A, 221(582-593), 163-198. https://doi.org/10.1098/rsta.1921.0006
  13. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
  14. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014a), "On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Centr. South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y
  15. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014b), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strength Mater., 46(3), 133-148.
  16. Haeri, H. (2015a), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  17. Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  18. Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  19. Haeri, H., Khaloo, A. and Marji, M.F. (2015a) "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  20. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015b), "On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5
  21. Haeri, H., Marji, M.F. and Shahriar, K. (2015c), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5
  22. Haeri, H., Khaloo, A. and Marji, M.F. (2015d), "Experimental and numerical simulation of the microcracks coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  23. Haeri, H., Khaloo, A. and Marji, M.F. (2015e), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arab. J. Geosci., 8(8), 5897-5908. https://doi.org/10.1007/s12517-014-1598-1
  24. Ibrahim, M.W., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Proc. Soc. Behav. Sci., 198, 2280-2289.
  25. Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotechnique, 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97
  26. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and nonuniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128,139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011
  27. Lajtai, E.Z. (1969), "Resistance of discontinuous rocks in direct shear", Geotechnique, 19, 218-233. https://doi.org/10.1680/geot.1969.19.2.218
  28. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Construct. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  29. Li, D., Zhou, C., Lu, W. and Jiang, Q. (2009), "A system reliability approach for evaluating stability of rock wedges with correlated failure modes", Comput. Geotech., 36(8), 1298-1307. https://doi.org/10.1016/j.compgeo.2009.05.013
  30. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute di placement measuring system for static and dynamic geomechanical model tests", Measurement, 105, 25-33.
  31. Li, Y., Li, C., Zhang, L., Zhu, W., Li, S. and Liu, J. (2016), "An experimental investigation on mechanical property and anchorage effect of bolted jointed rock mass", Geosci. J., 21(2), 253-265.
  32. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2016), "Experimental and numerical investigations on the shear behavior of a jointed rock mass", Geosci. J., 20(3), 371-379. https://doi.org/10.1007/s12303-015-0052-z
  33. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  34. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", J. Solids Struct., 42(9-10), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033
  35. Li, Y.Y., Zhou, H., Zhang L, Zhu, W., Li, S. and Liu, J. (2016), "Experimental and numerical investigations on mechanical property and reinforcement effect of bolted jointed rock mass", Construct. Build. Mater., 126, 843-856. https://doi.org/10.1016/j.conbuildmat.2016.09.100
  36. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Construct. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  37. Mughieda, O. and Alzo'ubi, A.K. (2004), "Fracture mechanisms of offset rock joints-A laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
  38. Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24(4), 985. https://doi.org/10.1007/s10706-005-8352-0
  39. Naghadehi, M.Z., Jimenez, R., KhaloKakaie, R. and Jalali, S.M.E. (2011), "A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes", Eng. Geol., 118(3-4), 82-92. https://doi.org/10.1016/j.enggeo.2011.01.003
  40. Ning, J., Liu, X., Tan, Y., Wang, J. and Tian, C. (2015), "Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation", Geomech. Eng., 9(5), 619-629. https://doi.org/10.12989/gae.2015.9.5.619
  41. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  42. Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793
  43. Regmi, A.D., Yoshida, K., Nagata, H., Pradhan, A.M.S., Pradhan, B. and Pourghasemi, H.R. (2013), "The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya", Nat. Hazards, 66(2), 501-532. https://doi.org/10.1007/s11069-012-0497-6
  44. Robertson, A.M., (1970), The Interpretation of Geological Factors for Use in Slope Theory, in Planning Open Pit Mines, Johannesburg, South Africa, 55-71.
  45. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  46. Sharma, R.K., Mehta, B.S. and Jamwal, C.S. (2013), "Cut slope stability evaluation of NH 21 along Nalayan-Gambhrola section, Bilaspur district, Himachal Pradesh, India", Nat. Hazards, 66(2), 249-270. https://doi.org/10.1007/s11069-012-0469-x
  47. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res. Solid Earth, 100(B4), 5975-5990. https://doi.org/10.1029/95JB00040
  48. Silva, R.V., De Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Construct. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  49. Singh, T.N., Gulati, A., Dontha, L. and Bhardwaj, V. (2008), "Evaluating cut slope failure by numerical analysis-A case study", Nat. Hazards, 47, 263-279. https://doi.org/10.1007/s11069-008-9219-5
  50. Stimpson, B., (1970), "Modeling materials for engineering rock mechanics", J. Rock Mech. Min. Sci. Geomech. Abstr., 7(1), 77-121. https://doi.org/10.1016/0148-9062(70)90029-X
  51. Tian, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Construct. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  52. Wang, H., Li, Y., Li, S., Zhang, Q. and Liu, J. (2016), "An elastoplastic damage constitutive model for jointed rock mass with an application", Geomech. Eng., 11(1), 77-94. https://doi.org/10.12989/gae.2016.11.1.077
  53. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  54. Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
  55. Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
  56. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  57. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557 https://doi.org/10.12989/gae.2015.8.4.541
  58. Zhao, C. (2015), "Analytical solutions for crack initiation on floorstrata interface during mining", Geomech. Eng., 8(2), 237-255. https://doi.org/10.12989/gae.2015.8.2.237
  59. Zhao, W., Huang, R. and Yan, M. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 757-767. https://doi.org/10.12989/gae.2015.8.6.757

피인용 문헌

  1. A new rock brittleness index on the basis of punch penetration test data vol.21, pp.4, 2020, https://doi.org/10.12989/gae.2020.21.4.391