DOI QR코드

DOI QR Code

Visualization System for Natural Disaster Data

자연재난 데이터 실감 가시화 시스템

  • 김종용 (동국대학교 멀티미디어학과) ;
  • 정석철 (동국대학교 멀티미디어학과) ;
  • 이계원 (동국대학교 멀티미디어학과) ;
  • 조준영 (동국대학교 멀티미디어학과) ;
  • 김동욱 (동국대학교 멀티미디어학과) ;
  • 박상훈 (동국대학교 멀티미디어학과)
  • Received : 2018.06.22
  • Accepted : 2018.07.04
  • Published : 2018.07.10

Abstract

We introduces a system that enables fast and effective visualization of natural disaster data such as typhoons, tsunamis, floods, and flooding to help make informed decisions in disaster situations. Data containing disaster information consists of a few hundred megabytes to many tens and hundreds of gigabytes, which can not be handled by a PC. This system was implemented in the form of a client-server based service to generate and output results from high-performance servers. The server in a built-in, high-performance cluster handles client requests and sends the result of visualization to the client. Clients can receive the results in any form of images, videos, or 3D graphic model by specifying a desired time frame, effectively viewing the results with a user-friendly GUI.

태풍, 해일, 홍수, 범람 등에 관련된 자연재난 데이터를 빠르고 효과적으로 가시화하여 재난 재해 상황에서 정확한 의사결정을 할 수 있도록 지원하는 시스템을 소개한다. 재난정보를 포함하는 데이터는 적게는 수백 MB에서 많게는 수십, 수백 GB로 구성되어 있으므로 개인이 지닌 컴퓨터로는 처리할 수 없다. 그렇기 때문에 본 시스템은 클라이언트-서버 기반의 시스템을 제공하여 고성능 서버에서 가시화 결과를 생성하고 클라이언트에서는 결과를 받아 출력하는 형태로 구현되었다. 서버는 클라이언트의 요청을 처리하고 내장된 고성능 클러스터로 렌더링된 결과를 클라이언트로 전송한다. 클라이언트는 원하는 기간을 지정하여 가시화된 결과를 이미지, 동영상, 3D 그래픽 모델 중 원하는 형태로 서버로부터 제공받아 표출할 수 있으며 사용자 친화적인 GUI와 효과적으로 가시화 결과를 볼 수 있는 다양한 기능을 사용자에게 제공한다.

Keywords

References

  1. J. Kruger and R. Westermann, "Acceleration techniques for gpu-based volume rendering," in Proceedings of the 14th IEEE Visualization 2003 (VIS'03). IEEE Computer Society, 2003, p. 38.
  2. B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland, "Scalable rendering on pc clusters," IEEE Computer Graphics and Applications, vol. 21, no. 4, pp. 62-69, 2001. https://doi.org/10.1109/38.933525
  3. W. Wong and J. Lee, Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, 2005.
  4. 정석철, 정서원, 김종용, and 박상훈, "지구환경 데이터를 위한멀티플랫폼가시화시스템," 컴퓨터그래픽스학회논문지, vol. 21, no. 3, pp. 36-45, 2015.
  5. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M. DeBaud, "Pulse: A methodology to develop software product lines," in Proceedings of the 1999 symposium on Software reusability. ACM, 1999, pp. 122-131.
  6. S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins, "Scheduling task parallelism on multi-socket multicore systems," in Proceedings of the 1st International Workshop on Runtime and Operating Systems for Supercomputers. ACM, 2011, pp. 49-56.
  7. NetCDF, http://www.unidata.ucar.edu/, 2015.
  8. VTK, http://www.vtk.org/, 2016.
  9. Unity3d, https://unity3d.com/, 2018.
  10. C. Ware, "Color sequences for univariate maps: Theory, experiments and principles," IEEE Computer Graphics and Applications, vol. 8, no. 5, pp. 41-49, 1988. https://doi.org/10.1109/38.7760
  11. K. Nishihashi, T. Higaki, K. Okabe, B. Raytchev, T. Tamaki, and K. Kaneda, "Volume rendering using grid computing for large-scale volume data," International Journal of CAD/CAM, vol. 9, no. 1, pp. 111-120, 2009.
  12. X. Zhou, R. T. Collins, T. Kanade, and P. Metes, "A masterslave system to acquire biometric imagery of humans at distance," in First ACM SIGMM international workshop on Video surveillance. ACM, 2003, pp. 113-120.
  13. W. Gropp, R. Thakur, and E. Lusk, Using MPI-2: Advanced features of the message passing interface. MIT press, 1999.
  14. S. Lee, S.-J. Min, and R. Eigenmann, "Openmp to gpgpu: a compiler framework for automatic translation and optimization," ACM Sigplan Notices, vol. 44, no. 4, pp. 101-110, 2009. https://doi.org/10.1145/1594835.1504194
  15. CUDA, https://developer.nvidia.com/cuda-zone/, 2015.
  16. M. Levoy, "Efficient ray tracing of volume data," ACM Transactions on Graphics (TOG), vol. 9, no. 3, pp. 245-261, 1990. https://doi.org/10.1145/78964.78965
  17. H. Edelsbrunner, Geometry and topology for mesh generation. Cambridge University Press, 2001, vol. 7.
  18. N. Gorelick, "Google earth engine," in AGU Fall Meeting Abstracts, 2012.
  19. D. Eberly, "Triangulation by ear clipping," Geometric Tools, 2008.

Cited by

  1. Disaster Response Content for Effective Evacuation of Disaster Vulnerable Classes in Case of Disaster vol.19, pp.12, 2018, https://doi.org/10.9728/dcs.2018.19.12.2267