DOI QR코드

DOI QR Code

Interventional Cardiology for Congenital Heart Disease

  • 투고 : 2018.02.17
  • 심사 : 2018.03.05
  • 발행 : 2018.05.31

초록

Congenital heart interventions are now replacing surgical palliation and correction in an evolving number of congenital heart defects. Right ventricular outflow tract and ductus arteriosus stenting have demonstrated favorable outcomes compared to surgical systemic to pulmonary artery shunting, and it is likely surgical pulmonary valve replacement will become an uncommon procedure within the next decade, mirroring current practices in the treatment of atrial septal defects. Challenges remain, including the lack of device design focused on smaller infants and the inevitable consequences of somatic growth. Increasing parental and physician expectancy has inevitably lead to higher risk interventions on smaller infants and appreciation of the consequences of these interventions on departmental outcome data needs to be considered. Registry data evaluating congenital heart interventions remain less robust than surgical registries, leading to a lack of insight into the longer-term consequences of our interventions. Increasing collaboration with surgical colleagues has not been met with necessary development of dedicated equipment for hybrid interventions aimed at minimizing the longer-term consequences of scar to the heart. Therefore, great challenges remain to ensure children and adults with congenital heart disease continue to benefit from an exponential growth in minimally invasive interventions and technology. This can only be achieved through a concerted collaborative approach from physicians, industry, academia and regulatory bodies supporting great innovators to continue the philosophy of thinking beyond the limits that has been the foundation of our specialty for the past 50 years.

키워드

참고문헌

  1. Velasco Forte MN, Byrne N, Valverde I, et al. Interventional correction of sinus venosus atrial septal defect and partial anomalous pulmonary venous drainage: procedural planning using 3D printed models. JACC Cardiovasc Imaging 2018;11:275-8. https://doi.org/10.1016/j.jcmg.2017.07.010
  2. King TD, Thompson SL, Steiner C, Mills NL. Secundum atrial septal defect: nonoperative closure during cardiac catheterization. JAMA 1976;235:2506-9. https://doi.org/10.1001/jama.1976.03260490024013
  3. Porstmann W, Wierny L, Warnke H. Der Vershuss des Ductus Arteriosus in persistens ohne Thorakotomie 81, Miiffeilung. Thoraxchirurgie 1967;15:109-203.
  4. Fu YC, Bass J, Amin Z, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: results of the U.S. phase I trial. J Am Coll Cardiol 2006;47:319-25. https://doi.org/10.1016/j.jacc.2005.09.028
  5. McElhinney DB, Quartermain MD, Kenny D, Alboliras E, Amin Z. Relative risk factors for cardiac erosion following transcatheter closure of atrial septal defects: a case-control study. Circulation 2016;133:1738-46. https://doi.org/10.1161/CIRCULATIONAHA.115.019987
  6. van Velzen CL, Clur SA, Rijlaarsdam ME, et al. Prenatal detection of congenital heart disease--results of a national screening programme. BJOG 2016;123:400-7. https://doi.org/10.1111/1471-0528.13274
  7. Maxwell D, Allan L, Tynan MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J 1991;65:256-8. https://doi.org/10.1136/hrt.65.5.256
  8. Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014;129:2183-242. https://doi.org/10.1161/01.cir.0000437597.44550.5d
  9. Freud LR, McElhinney DB, Marshall AC, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation 2014;130:638-45. https://doi.org/10.1161/CIRCULATIONAHA.114.009032
  10. Marshall AC, Levine J, Morash D, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn 2008;28:1023-8. https://doi.org/10.1002/pd.2114
  11. Emery SP, Kreutzer J, McCaffrey FM, Sherman FS, Simhan HN, Keller BB. The learning curve for a fetal cardiac intervention team. Minim Invasive Surg 2010;2010:674185.
  12. Mohammad Nijres B, Kenny D, Kazmouz S, Hijazi ZM. Transcatheter closure of unroofed coronary sinus using covered stents in an adult with drainage of the coronary sinus to the right ventricle after supra-annular tricuspid valve replacement. Catheter Cardiovasc Interv 2017;90:1154-7. https://doi.org/10.1002/ccd.26996
  13. Papa M, Gaspardone A, Fragasso G, et al. Margonato. Feasibility and safety of transcatheter closure of atrial septal defects with deficient posterior rim. Catheter Cardiovasc Interv 2013;81:1180-7. https://doi.org/10.1002/ccd.24633
  14. Gray RG, Menon SC, Johnson JT, et al. Acute and midterm results following perventricular device closure of muscular ventricular septal defects: a multicenter PICES investigation. Catheter Cardiovasc Interv 2017;90:281-9. https://doi.org/10.1002/ccd.27121
  15. Koneti NR, Verma S, Bakhru S, et al. Transcatheter trans-septal antegrade closure of muscular ventricular septal defects in young children. Catheter Cardiovasc Interv 2013;82:E500-6.
  16. Jameel AA, Arfi AM, Arif H, Amjad K, Omar GM. Retrograde approach for device closure of muscular ventricular septal defects in children and adolescents, using the Amplatzer muscular ventricular septal defect occluder. Pediatr Cardiol 2006;27:720-8. https://doi.org/10.1007/s00246-006-1365-5
  17. Szkutnik M, Qureshi SA, Kusa J, Rosenthal E, Bialkowski J. Use of the Amplatzer muscular ventricular septal defect occluder for closure of perimembranous ventricular septal defects. Heart 2007;93:355-8. https://doi.org/10.1136/hrt.2006.096321
  18. Chungsomprasong P, Durongpisitkul K, Vijarnsorn C, Soongswang J, Le TP. The results of transcatheter closure of VSD using Amplatzer(R) device and Nit Occlud(R) Le coil. Catheter Cardiovasc Interv 2011;78:1032-40. https://doi.org/10.1002/ccd.23084
  19. Lin CH, Huddleston C, Balzer DT. Transcatheter ventricular septal defect (VSD) creation for restrictive VSD in double-outlet right ventricle. Pediatr Cardiol 2013;34:743-7. https://doi.org/10.1007/s00246-012-0337-1
  20. Xu Z, Owens G, Gordon D, Cain C, Ludomirsky A. Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation 2010;121:742-9. https://doi.org/10.1161/CIRCULATIONAHA.109.889071
  21. Backes CH, Cua C, Kreutzer J, et al. Low weight as an independent risk factor for adverse events during cardiac catheterization of infants. Catheter Cardiovasc Interv 2013;82:786-94. https://doi.org/10.1002/ccd.24726
  22. Zahn EM, Peck D, Phillips A, et al. Transcatheter closure of patent ductus arteriosus in extremely premature newborns: early results and midterm follow-up. JACC Cardiovasc Interv 2016;9:2429-37. https://doi.org/10.1016/j.jcin.2016.09.019
  23. Sathanandam S, Justino H, Waller BR 3rd, Radtke W, Qureshi AM. Initial clinical experience with the Medtronic Micro Vascular $Plug^{TM}$ in transcatheter occlusion of PDAs in extremely premature infants. Catheter Cardiovasc Interv 2017;89:1051-8. https://doi.org/10.1002/ccd.26878
  24. Akintuerk H, Michel-Behnke I, Valeske K, et al. Stenting of the arterial duct and banding of the pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 2002;105:1099-103. https://doi.org/10.1161/hc0902.104709
  25. Schranz D, Bauer A, Reich B, et al. Fifteen-year single center experience with the "Giessen Hybrid" approach for hypoplastic left heart and variants: current strategies and outcomes. Pediatr Cardiol 2015;36:365-73. https://doi.org/10.1007/s00246-014-1015-2
  26. Karamlou T, Overman D, Hill KD, et al. Stage 1 hybrid palliation for hypoplastic left heart syndrome--assessment of contemporary patterns of use: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg 2015;149:195-201, 202.e1. https://doi.org/10.1016/j.jtcvs.2014.08.020
  27. Glatz AC, Petit CJ, Goldstein BH, et al. Comparison between patent ductus arteriosus stent and modified blalock-taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow: insights from the congenital catheterization research collaborative. Circulation 2018;137:589-601. https://doi.org/10.1161/CIRCULATIONAHA.117.029987
  28. Bentham JR, Zava NK, Harrison WJ, et al. Duct stenting versus modified blalock taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study. Circulation 2018;137:581-8. https://doi.org/10.1161/CIRCULATIONAHA.117.028972
  29. Quandt D, Ramchandani B, Penford G, et al. Right ventricular outflow tract stent versus BT shunt palliation in tetralogy of Fallot. Heart 2017;103:1985-91.
  30. Quandt D, Ramchandani B, Stickley J, et al. Stenting of the right ventricular outflow tract promotes better pulmonary arterial growth compared with modified blalock-taussig shunt palliation in tetralogy of Fallot-type lesions. JACC Cardiovasc Interv 2017;10:1774-84. https://doi.org/10.1016/j.jcin.2017.06.023
  31. Barron DJ, Ramchandani B, Murala J, et al. Surgery following primary right ventricular outflow tract stenting for Fallot's tetralogy and variants: rehabilitation of small pulmonary arteries. Eur J Cardiothorac Surg 2013;44:656-62. https://doi.org/10.1093/ejcts/ezt188
  32. Neya K, Lee R, Guerrero JL, Lang P, Vlahakes GJ. Experimental ablation of outflow tract muscle with a thermal balloon catheter. Circulation 1995;91:2445-53. https://doi.org/10.1161/01.CIR.91.9.2445
  33. Ungerleider RM, Johnston TA, O'Laughlin MP, Jaggers JJ, Gaskin PR. Intraoperative stents to rehabilitate severely stenotic pulmonary vessels. Ann Thorac Surg 2001;71:476-81. https://doi.org/10.1016/S0003-4975(00)01822-1
  34. Patel S, Saini AP, Nair A, Weber HS. Transcarotid balloon valvuloplasty in neonates and small infants with critical aortic valve stenosis utilizing continuous transesophageal echocardiographic guidance: a 22 year single center experience from the cath lab to the bedside. Catheter Cardiovasc Interv 2015;86:821-7. https://doi.org/10.1002/ccd.26036
  35. Sosnowski C, Matella T, Fogg L, et al. Hybrid pulmonary artery plication followed by transcatheter pulmonary valve replacement: comparison with surgical PVR. Catheter Cardiovasc Interv 2016;88:804-10. https://doi.org/10.1002/ccd.26620
  36. Holzer RJ, Sisk M, Chisolm JL, et al. Completion angiography after cardiac surgery for congenital heart disease: complementing the intraoperative imaging modalities. Pediatr Cardiol 2009;30:1075-82. https://doi.org/10.1007/s00246-009-9500-8
  37. Takaya Y, Akagi T, Nakagawa K, Ito H. Integrated 3D echo-X-ray navigation guided transcatheter closure of complex multiple atrial septal defects. JACC Cardiovasc Interv 2016;9:e111-2. https://doi.org/10.1016/j.jcin.2016.03.014
  38. Aldoss O, Fonseca BM, Truong UT, et al. Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 2016;37:1211-21. https://doi.org/10.1007/s00246-016-1418-3
  39. Truong UT, Fagan TE, Deterding R, Ing RJ, Fonseca BM. Use of rotational angiography in assessing relationship of the airway to vasculature during cardiac catheterization. Catheter Cardiovasc Interv 2015;86:1068-77. https://doi.org/10.1002/ccd.26004
  40. Bruckheimer E, Rotschild C, Dagan T, et al. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging 2016;17:845-9. https://doi.org/10.1093/ehjci/jew087
  41. Cheatham JP, Hellenbrand WE, Zahn EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 2015;131:1960-70. https://doi.org/10.1161/CIRCULATIONAHA.114.013588
  42. Morray BH, McElhinney DB, Cheatham JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv 2013;6:535-42. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000202
  43. Torres A, Sanders SP, Vincent JA, et al. Iatrogenic aortopulmonary communications after transcatheter interventions on the right ventricular outflow tract or pulmonary artery: pathophysiologic, diagnostic, and management considerations. Catheter Cardiovasc Interv 2015;86:438-52. https://doi.org/10.1002/ccd.25897
  44. Van Dijck I, Budts W, Cools B, et al. Infective endocarditis of a transcatheter pulmonary valve in comparison with surgical implants. Heart 2015;101:788-93. https://doi.org/10.1136/heartjnl-2014-306761
  45. Boudjemline Y. A new one-step procedure for pulmonary valve implantation of the melody valve: simultaneous prestenting and valve implantation. Catheter Cardiovasc Interv 2018;91:64-70. https://doi.org/10.1002/ccd.27332
  46. Shahanavaz S, Rockefeller T, Nicolas R, Balzer D. Fracturing a dysfunctional Edwards Perimount bioprosthetic valve to facilitate percutaneous valve-in-valve placement of SAPIEN 3 valve with modified delivery system. Catheter Cardiovasc Interv 2018;91:81-5. https://doi.org/10.1002/ccd.27237
  47. Morray BH, McElhinney DB, Boudjemline Y, et al. Multicenter experience evaluating transcatheter pulmonary valve replacement in bovine jugular vein (Contegra) right ventricle to pulmonary artery conduits. Circ Cardiovasc Interv 2017;10:e004914. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004914
  48. Levi DS, Sinha S, Salem MM, Aboulhosn JA. Transcatheter native pulmonary valve and tricuspid valve replacement with the sapien XT: initial experience and development of a new delivery platform. Catheter Cardiovasc Interv 2016;88:434-43. https://doi.org/10.1002/ccd.26398
  49. Cao QL, Kenny D, Zhou D, et al. Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter Cardiovasc Interv 2014;84:1131-7. https://doi.org/10.1002/ccd.25544
  50. Bergersen L, Benson LN, Gillespie MJ, et al. Harmony feasibility trial: acute and short-term outcomes with a self-expanding transcatheter pulmonary valve. JACC Cardiovasc Interv 2017;10:1763-73. https://doi.org/10.1016/j.jcin.2017.05.034
  51. Kim GB, Kwon BS, Lim HG. First in human experience of a new self-expandable percutaneous pulmonary valve implantation using knitted nitinol-wire and tri-leaflet porcine pericardial valve in the native right ventricular outflow tract. Catheter Cardiovasc Interv 2017;89:906-9. https://doi.org/10.1002/ccd.26910
  52. Phillips AB, Nevin P, Shah A, Olshove V, Garg R, Zahn EM. Development of a novel hybrid strategy for transcatheter pulmonary valve placement in patients following transannular patch repair of tetralogy of Fallot. Catheter Cardiovasc Interv 2016;87:403-10. https://doi.org/10.1002/ccd.26315
  53. Hasan BS, McElhinney DB, Brown DW, et al. Short-term performance of the transcatheter melody valve in high-pressure hemodynamic environments in the pulmonary and systemic circulations. Circ Cardiovasc Interv 2011;4:615-20. https://doi.org/10.1161/CIRCINTERVENTIONS.111.963389
  54. Quinonez LG, Breitbart R, Tworetsky W, Lock JE, Marshall AC, Emani SM. Stented bovine jugular vein graft (melody valve) for surgical mitral valve replacement in infants and children. J Thorac Cardiovasc Surg 2014;148:1443-9. https://doi.org/10.1016/j.jtcvs.2013.10.059
  55. Maglione J, Bergersen L, Lock JE, McElhinney DB. Ultra-high-pressure balloon angioplasty for treatment of resistant stenoses within or adjacent to previously implanted pulmonary arterial stents. Circ Cardiovasc Interv 2009;2:52-8. https://doi.org/10.1161/CIRCINTERVENTIONS.108.826263
  56. Ewert P, Riesenkampff E, Neuss M, Kretschmar O, Nagdyman N, Lange PE. Novel growth stent for the permanent treatment of vessel stenosis in growing children: an experimental study. Catheter Cardiovasc Interv 2004;62:506-10. https://doi.org/10.1002/ccd.20136
  57. Shibbani K, Kenny D, McElhinney D, Hijazi ZM, Moran T. Identifying gaps in technology for congenital interventions: analysis of a needs survey from congenital interventional cardiologists. Pediatr Cardiol 2016;37:925-31. https://doi.org/10.1007/s00246-016-1372-0
  58. McCrossan BA, McMahon CJ, Walsh KP. First reported use of drug-eluting bioabsorbable vascular scaffold in congenital heart disease. Catheter Cardiovasc Interv 2016;87:324-8. https://doi.org/10.1002/ccd.25768
  59. Mullen MJ, Hildick-Smith D, De Giovanni JV, et al. BioSTAR Evaluation STudy (BEST): a prospective, multicenter, phase I clinical trial to evaluate the feasibility, efficacy, and safety of the BioSTAR bioabsorbable septal repair implant for the closure of atrial-level shunts. Circulation 2006;114:1962-7. https://doi.org/10.1161/CIRCULATIONAHA.106.664672
  60. Happel CM, Laser KT, Sigler M, Kececioglu D, Sandica E, Haas NA. Single center experience: Implantation failures, early, and late complications after implantation of a partially biodegradable ASD/PFO-device (BioStar(R)). Catheter Cardiovasc Interv 2015;85:990-7. https://doi.org/10.1002/ccd.25783
  61. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2008;118:2395-451. https://doi.org/10.1161/CIRCULATIONAHA.108.190811
  62. Feltes TF, Bacha E, Beekman RH 3rd, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 2011;123:2607-52. https://doi.org/10.1161/CIR.0b013e31821b1f10
  63. Porras D, Brown DW, Rathod R, et al. Acute outcomes after introduction of a standardized clinical assessment and management plan (SCAMP) for balloon aortic valvuloplasty in congenital aortic stenosis. Congenit Heart Dis 2014;9:316-25. https://doi.org/10.1111/chd.12142
  64. Ryan A, Duignan S, Kenny D, McMahon CJ. Decision making in paediatric cardiology. Are we prone to heuristics, biases and traps? Pediatr Cardiol 2018;39:160-7. https://doi.org/10.1007/s00246-017-1742-2
  65. Boe BA, Zampi JD, Kennedy KF, et al. Acute success of balloon aortic valvuloplasty in the current era: an NCDR(R) study. JACC Cardiovasc Interv 2017;10:1717-26. https://doi.org/10.1016/j.jcin.2017.08.001
  66. Bergersen L, Gauvreau K, Foerster SR, et al. Catheterization for congenital heart disease adjustment for risk method (CHARM). JACC Cardiovasc Interv 2011;4:1037-46. https://doi.org/10.1016/j.jcin.2011.05.021
  67. Nykanen DG, Forbes TJ, Du W, et al. CRISP: Catheterization RISk score for Pediatrics: a report from the Congenital Cardiac Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv 2016;87:302-9. https://doi.org/10.1002/ccd.26300
  68. Cevallos PC, Rose MJ, Armsby LB, et al. Implementation of methodology for quality improvement in pediatric cardiac catheterization: a multi-center initiative by the congenital cardiac catheterization project on outcomes-quality improvement (C3PO-QI). Pediatr Cardiol 2016;37:1436-45. https://doi.org/10.1007/s00246-016-1454-z
  69. Cohen S, Liu A, Gurvitz M, et al. Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation. 2017 [Epub ahead of print].
  70. Esch JJ, Shah PB, Cockrill BA, et al. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant 2013;32:381-7. https://doi.org/10.1016/j.healun.2013.01.1049
  71. Alsoufi B, Alfadley F, Al-Omrani A, et al. Hybrid management strategy for percutaneous Fontan completion without surgery: early results. Ann Thorac Surg 2011;91:566-72. https://doi.org/10.1016/j.athoracsur.2010.08.034
  72. Ratnayaka K, Rogers T, Schenke WH, et al. Magnetic resonance imaging-guided transcatheter cavopulmonary shunt. JACC Cardiovasc Interv 2016;9:959-70. https://doi.org/10.1016/j.jcin.2016.01.032
  73. Rogers T, Lederman RJ. Interventional CMR: clinical applications and future directions. Curr Cardiol Rep 2015;17:31. https://doi.org/10.1007/s11886-015-0580-1
  74. Sizarov A, Boudjemline Y. Novel materials and devices in the transcatheter management of congenital heart diseases--the future comes slowly (part 1). Arch Cardiovasc Dis 2016;109:278-85. https://doi.org/10.1016/j.acvd.2015.12.002
  75. Sizarov A, Boudjemline Y. Novel materials and devices in the transcatheter creation of vascular anastomosis--the future comes slowly (part 2). Arch Cardiovasc Dis 2016;109:286-95. https://doi.org/10.1016/j.acvd.2016.01.007
  76. Sizarov A, Boudjemline Y. Novel materials and devices in the transcatheter management of congenital heart diseases-the future comes slowly (part 3). Arch Cardiovasc Dis 2016;109:348-58. https://doi.org/10.1016/j.acvd.2016.01.005
  77. Haggerty CM, de Zelicourt DA, Restrepo M, et al. Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann Biomed Eng 2012;40:2639-51. https://doi.org/10.1007/s10439-012-0614-4
  78. Brili S, Tousoulis D, Antoniades C, et al. Evidence of vascular dysfunction in young patients with successfully repaired coarctation of aorta. Atherosclerosis 2005;182:97-103. https://doi.org/10.1016/j.atherosclerosis.2005.01.030
  79. Frydrychowicz A, Markl M, Harloff A, et al. Flow-sensitive in-vivo 4D MR imaging at 3T for the analysis of aortic hemodynamics and derived vessel wall parameters. RoFo 2007;179:463-72. https://doi.org/10.1055/s-2007-962941
  80. Avolio E, Caputo M, Madeddu P. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol 2015;3:39.

피인용 문헌

  1. Novel use of Konar-multifunctional occluder vol.30, pp.11, 2018, https://doi.org/10.1017/s1047951120002668