DOI QR코드

DOI QR Code

Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure

  • Yoo, Sung J. (College of Veterinary Medicine, Konkuk University) ;
  • Kwon, Taeyong (College of Veterinary Medicine, Konkuk University) ;
  • Lyoo, Young S. (College of Veterinary Medicine, Konkuk University)
  • Received : 2017.11.18
  • Accepted : 2017.12.12
  • Published : 2018.01.31

Abstract

Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations.

Keywords

Acknowledgement

Supported by : Konkuk university

References

  1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992;56:152-79.
  2. Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci 2014;1323:115-39. https://doi.org/10.1111/nyas.12462
  3. Cauldwell AV, Long JS, Moncorge O, Barclay WS. Viral determinants of influenza A virus host range. J Gen Virol 2014;95:1193-210. https://doi.org/10.1099/vir.0.062836-0
  4. Short KR, Richard M, Verhagen JH, et al. One health, multiple challenges: the inter-species transmission of influenza A virus. One Health 2015;1:1-13. https://doi.org/10.1016/j.onehlt.2015.03.001
  5. Zhou L, Ren R, Yang L, et al. Sudden increase in human infection with avian influenza A(H7N9) virus in China, September-December 2016. Western Pac Surveill Response J 2017;8:6-14.
  6. Iuliano AD, Jang Y, Jones J, et al. Increase in human infections with avian influenza A(H7N9) virus during the fifth epidemic, October 2016-February 2017. MMWR Morb Mortal Wkly Rep 2017;66:254-5. https://doi.org/10.15585/mmwr.mm6609e2
  7. Smith GJ, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009;459:1122-5. https://doi.org/10.1038/nature08182
  8. Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009;325: 197-201. https://doi.org/10.1126/science.1176225
  9. Vincent A, Awada L, Brown I, et al. Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 2014;61:4-17. https://doi.org/10.1111/zph.12049
  10. Peiris M, Yen HL. Animal and human influenzas. Rev Sci Tech 2014;33:539-53. https://doi.org/10.20506/rst.33.2.2289
  11. Hayward AC, Fragaszy EB, Bermingham A, et al. Comparative community burden and severity of seasonal and pandemic influenza: results of the Flu Watch cohort study. Lancet Respir Med 2014;2:445-54. https://doi.org/10.1016/S2213-2600(14)70034-7
  12. Horby PW. Community studies of influenza: new knowledge, new questions. Lancet Respir Med 2014;2:430-1. https://doi.org/10.1016/S2213-2600(14)70053-0
  13. World Organisation for Animal Health. Terrestrial Animal Health Code [Internet]. Paris: World Organisation for Animal Health; 2017 [cited 2017 Oct 28]. Available from: http://www.oie.int/international-standard-setting/terrestrial-code/access-online.
  14. Shen YY, Ke CW, Li Q, et al. Novel reassortant avian influenza A(H5N6) viruses in humans, Guangdong, China, 2015. Emerg Infect Dis 2016;22:1507-9. https://doi.org/10.3201/eid2208.160146
  15. Nguyen DC, Uyeki TM, Jadhao S, et al. Isolation and characterization of avian influenza viruses, including highly pathogenic H5N1, from poultry in live bird markets in Hanoi, Vietnam, in 2001. J Virol 2005;79:4201-12. https://doi.org/10.1128/JVI.79.7.4201-4212.2005
  16. Lee CW, Senne DA, Linares JA, et al. Characterization of recent H5 subtype avian influenza viruses from US poultry. Avian Pathol 2004;33:288-97. https://doi.org/10.1080/0307945042000203407
  17. Lee DH, Bertran K, Kwon JH, Swayne DE. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci 2017;18:269-80. https://doi.org/10.4142/jvs.2017.18.S1.269
  18. Lee DH, Torchetti MK, Winker K, Ip HS, Song CS, Swayne DE. Intercontinental spread of Asian-origin H5N8 to North America through beringia by migratory birds. J Virol 2015; 89:6521-4. https://doi.org/10.1128/JVI.00728-15
  19. Anderson T, Capua I, Dauphin G, et al. FAO-OIE-WHO Joint Technical Consultation on avian influenza at the human-animal interface. Influenza Other Respir Viruses 2010;4 Suppl 1:1-29.
  20. Pfeiffer DU, Otte MJ, Roland-Holst D, Zilberman D. A one health perspective on HPAI H5N1 in the Greater Mekong sub-region. Comp Immunol Microbiol Infect Dis 2013; 36:309-19. https://doi.org/10.1016/j.cimid.2012.11.005
  21. World Health Organization. Fact sheets 211 influenza (seasonal) [Internet]. Geneva: World Health Organization; 2016 [cited 2017 Oct 15]. Available from: http://www.who.int/mediacentre/factsheets/fs211/en.
  22. Molinari NA, Ortega-Sanchez IR, Messonnier ML, et al. The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 2007;25:5086-96. https://doi.org/10.1016/j.vaccine.2007.03.046
  23. World Health Organization. Influenza update [Internet]. Geneva: World Health Organization; 2017 [cited 2017 Oct 15]. Available from: http://www.who.int/influenza/surveillance_monitoring/updates/latest_update_GIP_surveillance/en.
  24. Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 2006;12:15-22. https://doi.org/10.3201/eid1209.05-0979
  25. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature 2005;437:889-93. https://doi.org/10.1038/nature04230
  26. Anhlan D, Grundmann N, Makalowski W, Ludwig S, Scholtissek C. Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis. RNA 2011;17:64-73. https://doi.org/10.1261/rna.2395211
  27. Reid AH, Fanning TG, Janczewski TA, Lourens RM, Taubenberger JK. Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J Virol 2004;78:12462-70. https://doi.org/10.1128/JVI.78.22.12462-12470.2004
  28. Gibbs MJ, Gibbs AJ. Molecular virology: was the 1918 pandemic caused by a bird flu? Nature 2006;440:E8. https://doi.org/10.1038/nature04823
  29. Fanning TG, Slemons RD, Reid AH, Janczewski TA, Dean J, Taubenberger JK. 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J Virol 2002;76:7860-2. https://doi.org/10.1128/JVI.76.15.7860-7862.2002
  30. Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010;7:440-51. https://doi.org/10.1016/j.chom.2010.05.009
  31. Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017;48:49. https://doi.org/10.1186/s13567-017-0453-2
  32. Epperson S, Jhung M, Richards S, et al. Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012. Clin Infect Dis 2013;57 Suppl 1:S4-11. https://doi.org/10.1093/cid/cit272
  33. Bowman AS, Walia RR, Nolting JM, et al. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016. Emerg Infect Dis 2017;23:1551-5. https://doi.org/10.3201/eid2309.170847
  34. World Health Organization. Influenza: monthly risk assessment summary (7 December 2017) [Internet]. Geneva: World Health Organization; 2017 [cited 2017 Dec 7]. Available from: http://www.who.int/influenza/human_animal_interface/HAI_Risk_Assessment/en.
  35. Krauss S, Stallknecht DE, Slemons RD, et al. The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proc Natl Acad Sci U S A 2016;113:9033-8. https://doi.org/10.1073/pnas.1608853113
  36. Ellis TM, Bousfield RB, Bissett LA, et al. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol 2004;33:492-505. https://doi.org/10.1080/03079450400003601
  37. Desvaux S, Marx N, Ong S, et al. Highly pathogenic avian influenza virus (H5N1) outbreak in captive wild birds and cats, Cambodia. Emerg Infect Dis 2009;15:475-8. https://doi.org/10.3201/eid1503.081410
  38. Harfoot R, Webby RJ. H5 influenza, a global update. J Microbiol 2017;55:196-203. https://doi.org/10.1007/s12275-017-7062-7
  39. World Health Organization. H5N1 avian influenza: timeline of major events [Internet]. Geneva: World Health Organization; 2014 [cited 2017 Nov 14]. Available from: http://www.who.int/influenza/human_animal_interface/en.
  40. World Organisation for Animal Health. Economic analysis: prevention versus outbreak costs [Internet]. Paris: World Organisation for Animal Health; 2007 [cited 2017 Oct 28]. Available from: http://www.oie.int/fileadmin/Home/eng/Support_to_OIE_Members/docs/pdf/OIE_-_ Cost-Benefit_Analysis__Part_I_.pdf.
  41. U.S. Government Accountability Office. Avian influenza: USDA has taken actions to reduce risks but needs a plan to evaluate its efforts [Internet]. Washington, DC: U.S. Government Accountability Office; 2017 [cited 2017 Nov 4]. Available from: http://www.gao.gov/assets/690/684086.pdf.
  42. Hyundai Research Institute. Spread of AIV at utmost speed ever and the resulting economic losses [Internet]. Seoul: Hyundai Research Institute; 2016 [cited 2017 Nov 1]. Available from: http://hri.co.kr/upload/publication/2016121494516[1].pdf.
  43. Rushton J, Gilbert W. The economics of animal health: direct and indirect costs of animal disease outbreaks [Internet]. Paris: World Organisation for Animal Health; 2016 [cited 2017 Nov 4]. Available from: https://www.oie.int/eng/session2016/sg84/02-Monday/Rushton_Technical_Paper_TT1_final_revision.pdf.
  44. Swayne DE, Hill RE, Clifford J. Safe application of regionalization for trade in poultry and poultry products during highly pathogenic avian influenza outbreaks in the USA. Avian Pathol 2017;46:125-30. https://doi.org/10.1080/03079457.2016.1257775
  45. Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. Diseases of swine. 10th ed. Chichester: Wiley-Blackwell; 2012.
  46. Smith RD, Keogh-Brown MR. Macroeconomic impact of pandemic influenza and associated policies in Thailand, South Africa and Uganda. Influenza Other Respir Viruses 2013;7 Suppl 2:64-71. https://doi.org/10.1111/irv.12083
  47. Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998;72:7367-73.
  48. Trebbien R, Larsen LE, Viuff BM. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 2011;8:434. https://doi.org/10.1186/1743-422X-8-434
  49. Chan RW, Karamanska R, Van Poucke S, et al. Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis. Influenza Other Respir Viruses 2013;7:1269-82. https://doi.org/10.1111/irv.12144
  50. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;360:2605-15. https://doi.org/10.1056/NEJMoa0903810
  51. Rajao DS, Walia RR, Campbell B, et al. Reassortment between Swine H3N2 and 2009 pandemic H1N1 in the United States resulted in influenza A viruses with diverse genetic constellations with variable virulence in pigs. J Virol 2017;91:e01763-16.
  52. Nelson MI, Gramer MR, Vincent AL, Holmes EC. Global transmission of influenza viruses from humans to swine. J Gen Virol 2012;93:2195-203. https://doi.org/10.1099/vir.0.044974-0
  53. Shortridge KF, Webster RG, Butterfield WK, Campbell CH. Persistence of Hong Kong influenza virus variants in pigs. Science 1977;196:1454-5. https://doi.org/10.1126/science.867041
  54. Gilbert M, Conchedda G, Van Boeckel TP, et al. Income disparities and the global distribution of intensively farmed chicken and pigs. PLoS One 2015;10:e0133381. https://doi.org/10.1371/journal.pone.0133381
  55. Swayne DE, Kapczynski DR. Vaccines, vaccination, and immunology for avian influenza viruses in poultry. In: Swayne DE, editor. Avian influenza. Ames, IW: Blackwell Publishing; 2008. p.407-51.
  56. Vincent AL, Perez DR, Rajao D, et al. Influenza A virus vaccines for swine. Vet Microbiol 2017;206:35-44. https://doi.org/10.1016/j.vetmic.2016.11.026
  57. Peiris JS, Cowling BJ, Wu JT, et al. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia. Lancet Infect Dis 2016;16:252-8. https://doi.org/10.1016/S1473-3099(15)00502-2
  58. Bowman AS, Nolting JM, Nelson SW, Slemons RD. Subclinical influenza virus A infections in pigs exhibited at agricultural fairs, Ohio, USA, 2009-2011. Emerg Infect Dis 2012;18:1945-50. https://doi.org/10.3201/eid1812.121116
  59. Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis 2012;56(4 Suppl):818-28. https://doi.org/10.1637/10183-041012-Review.1
  60. Swayne DE, Pavade G, Hamilton K, Vallat B, Miyagishima K. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev Sci Tech 2011;30:839-70. https://doi.org/10.20506/rst.30.3.2081
  61. Lee DH, Song CS. H9N2 avian influenza virus in Korea: evolution and vaccination. Clin Exp Vaccine Res 2013;2:26-33. https://doi.org/10.7774/cevr.2013.2.1.26
  62. Perk S, Golender N, Banet-Noach C, et al. Phylogenetic analysis of hemagglutinin, neuraminidase, and nucleoprotein genes of H9N2 avian influenza viruses isolated in Israel during the 2000-2005 epizootic. Comp Immunol Microbiol Infect Dis 2009;32:221-38. https://doi.org/10.1016/j.cimid.2007.06.008
  63. Naeem K, Siddique N. Use of strategic vaccination for the control of avian influenza in Pakistan. Dev Biol (Basel) 2006;124:145-50.
  64. Lewis NS, Russell CA, Langat P, et al. The global antigenic diversity of swine influenza A viruses. Elife 2016;5:e12217.
  65. Kong W, Ye J, Guan S, Liu J, Pu J. Epidemic status of Swine influenza virus in china. Indian J Microbiol 2014;54:3-11. https://doi.org/10.1007/s12088-013-0419-7
  66. Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. Swine influenza viruses a North American perspective. Adv Virus Res 2008;72:127-54.
  67. Rashid A, Rasheed K, Akhtar M. Factors influencing vaccine efficacy: a general review. J Anim Plant Sci 2009;19:22-5.
  68. Swayne DE. Animal influenza. 2nd ed. Ames, IW: John Wiley and Sons Inc.; 2016.
  69. Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: status and future developments. Vaccine 2015;33:2414-24. https://doi.org/10.1016/j.vaccine.2015.03.052
  70. Spackman E, Pantin-Jackwood MJ. Practical aspects of vaccination of poultry against avian influenza virus. Vet J 2014;202:408-15. https://doi.org/10.1016/j.tvjl.2014.09.017
  71. Trombetta CM, Perini D, Mather S, Temperton N, Montomoli E. Overview of serological techniques for influenza vaccine evaluation: past, present and future. Vaccines (Basel) 2014;2:707-34. https://doi.org/10.3390/vaccines2040707
  72. Park AW, Daly JM, Lewis NS, Smith DJ, Wood JL, Grenfell BT. Quantifying the impact of immune escape on transmission dynamics of influenza. Science 2009;326:726-8. https://doi.org/10.1126/science.1175980
  73. Abdelwhab EM, Hassan MK, Abdel-Moneim AS, et al. Introduction and enzootic of A/H5N1 in Egypt: virus evolution, pathogenicity and vaccine efficacy ten years on. Infect Genet Evol 2016;40:80-90. https://doi.org/10.1016/j.meegid.2016.02.023
  74. Lee DH, Fusaro A, Song CS, Suarez DL, Swayne DE. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea. Virology 2016;488:225-31. https://doi.org/10.1016/j.virol.2015.11.023
  75. Lee CW, Senne DA, Suarez DL. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 2004;78:8372-81. https://doi.org/10.1128/JVI.78.15.8372-8381.2004
  76. Vijaykrishna D, Smith GJ, Pybus OG, et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 2011;473:519-22. https://doi.org/10.1038/nature10004
  77. Harder TC, Grosse Beilage E, Lange E, et al. Expanded cocirculation of stable subtypes, emerging lineages, and new sporadic reassortants of porcine influenza viruses in swine populations in Northwest Germany. J Virol 2013; 87:10460-76. https://doi.org/10.1128/JVI.00381-13
  78. Cecchinato M, Catelli E, Lupini C, et al. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Vet Microbiol 2010;146:24-34. https://doi.org/10.1016/j.vetmic.2010.04.014
  79. Franzo G, Tucciarone CM, Cecchinato M, Drigo M. Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: a large scale epidemiological study. Sci Rep 2016;6:39458. https://doi.org/10.1038/srep39458
  80. Kwon T, Lee DU, Yoo SJ, Je SH, Shin JY, Lyoo YS. Genotypic diversity of porcine circovirus type 2 (PCV2) and genotype shift to PCV2d in Korean pig population. Virus Res 2017;228:24-9. https://doi.org/10.1016/j.virusres.2016.11.015
  81. Yoo SJ, Kwon T, Kang K, et al. Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Transbound Emerg Dis 2018 Jan 10 [Epub]. https://doi.org/e01763-1610.1111/tbed.12798.
  82. Rodpothong P, Auewarakul P. Viral evolution and transmission effectiveness. World J Virol 2012;1:131-4. https://doi.org/10.5501/wjv.v1.i5.131
  83. Rajao DS, Loving CL, Gauger PC, Kitikoon P, Vincent AL. Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. Vaccine 2014;32:5170-6. https://doi.org/10.1016/j.vaccine.2014.07.059
  84. Gauger PC, Vincent AL, Loving CL, et al. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (delta-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. Vaccine 2011;29:2712-9. https://doi.org/10.1016/j.vaccine.2011.01.082
  85. Vincent AL, Lager KM, Janke BH, Gramer MR, Richt JA. Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine. Vet Microbiol 2008;126:310-23. https://doi.org/10.1016/j.vetmic.2007.07.011
  86. Khurana S, Loving CL, Manischewitz J, et al. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci Transl Med 2013;5:200ra114.
  87. Sun S, Cui Z, Wang J, Wang Z. Protective efficacy of vaccination against highly pathogenic avian influenza is dramatically suppressed by early infection of chickens with reticuloendotheliosis virus. Avian Pathol 2009;38:31-4. https://doi.org/10.1080/03079450802607504
  88. Rajao DS, Sandbulte MR, Gauger PC, et al. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 2016;491:79-88. https://doi.org/10.1016/j.virol.2016.01.015
  89. Centers for Disease Control and Prevention. Principles of vaccination [Internet]. Atlanta, GA: Centers for Disease Control and Prevention; 2015 [cited 2017 Nov 4]. Available from: https://www.cdc.gov/vaccines/pubs/pinkbook/prinvac.html.
  90. Dutta A, Huang CT, Lin CY, et al. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs. Sci Rep 2016;6:32973. https://doi.org/10.1038/srep32973
  91. Savill NJ, St Rose SG, Keeling MJ, Woolhouse ME. Silent spread of H5N1 in vaccinated poultry. Nature 2006;442:757. https://doi.org/10.1038/442757a
  92. Poetri ON, Van Boven M, Claassen I, et al. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers. Res Vet Sci 2014;97:637-41. https://doi.org/10.1016/j.rvsc.2014.09.013
  93. Wright PF. Vaccine preparedness: are we ready for the next influenza pandemic? N Engl J Med 2008;358:2540-3. https://doi.org/10.1056/NEJMp0803650
  94. Zhou F, Zhou J, Ma L, et al. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1. Biochem Biophys Res Commun 2012;421:850-4. https://doi.org/10.1016/j.bbrc.2012.04.101
  95. Hu AY, Tseng YF, Weng TC, et al. Production of inactivated influenza H5N1 vaccines from MDCK cells in serumfree medium. PLoS One 2011;6:e14578. https://doi.org/10.1371/journal.pone.0014578
  96. Ping J, Lopes TJ, Nidom CA, et al. Development of highyield influenza A virus vaccine viruses. Nat Commun 2015;6:8148. https://doi.org/10.1038/ncomms9148
  97. Centers for Disease Control and Prevention. Cell-based flu vaccines [Internet]. Atlanta, GA: Centers for Disease Control and Prevention; 2016 [cited 2017 Nov 4]. Available from: https://www.cdc.gov/flu/protect/vaccine/cell-based.htm.
  98. Smith JH, Papania M, Knaus D, et al. Nebulized live-attenuated influenza vaccine provides protection in ferrets at a reduced dose. Vaccine 2012;30:3026-33. https://doi.org/10.1016/j.vaccine.2011.10.092
  99. Liu Q, Mena I, Ma J, et al. Newcastle disease virus-vectored H7 and H5 live vaccines protect chickens from challenge with H7N9 or H5N1 avian influenza viruses. J Virol 2015;89:7401-8. https://doi.org/10.1128/JVI.00031-15
  100. Ma J, Lee J, Liu H, et al. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus. NPJ Vaccines 2017;2:33. https://doi.org/10.1038/s41541-017-0034-4
  101. Hu Z, Liu X, Jiao X, Liu X. Newcastle disease virus (NDV) recombinant expressing the hemagglutinin of H7N9 avian influenza virus protects chickens against NDV and highly pathogenic avian influenza A (H7N9) virus challenges. Vaccine 2017;35(48 Pt B):6585-90. https://doi.org/10.1016/j.vaccine.2017.10.010
  102. Nakaya T, Cros J, Park MS, et al. Recombinant Newcastle disease virus as a vaccine vector. J Virol 2001;75:11868-73. https://doi.org/10.1128/JVI.75.23.11868-11873.2001
  103. Ma W, Richt JA. Swine influenza vaccines: current status and future perspectives. Anim Health Res Rev 2010;11:81-96. https://doi.org/10.1017/S146625231000006X
  104. Suarez DL, Pantin-Jackwood MJ. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet Microbiol 2017;206:144-51. https://doi.org/10.1016/j.vetmic.2016.11.025
  105. Tsunekuni R, Hikono H, Tanikawa T, Kurata R, Nakaya T, Saito T. Recombinant avian paramyxovirus serotypes 2, 6, and 10 as vaccine vectors for highly pathogenic avian influenza in chickens with antibodies against Newcastle disease virus. Avian Dis 2017;61:296-306. https://doi.org/10.1637/11512-100616-RegR1
  106. Yoshida A, Samal SK. Avian Paramyxovirus Type-3 as a Vaccine vector: identification of a genome location for high level expression of a foreign gene. Front Microbiol 2017;8:693. https://doi.org/10.3389/fmicb.2017.00693
  107. Bublot M, Pritchard N, Swayne DE, et al. Development and use of fowlpox vectored vaccines for avian influenza. Ann N Y Acad Sci 2006;1081:193-201. https://doi.org/10.1196/annals.1373.023
  108. Richard-Mazet A, Goutebroze S, Le Gros FX, Swayne DE, Bublot M. Immunogenicity and efficacy of fowlpoxvectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies. Vet Res 2014;45:107. https://doi.org/10.1186/s13567-014-0107-6
  109. Swayne DE. Avian influenza vaccines and therapies for poultry. Comp Immunol Microbiol Infect Dis 2009;32:351-63. https://doi.org/10.1016/j.cimid.2008.01.006
  110. Iavarone C, O'Hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 2017;16:871-81. https://doi.org/10.1080/14760584.2017.1355245
  111. Diken M, Kreiter S, Selmi A, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011;18:702-8. https://doi.org/10.1038/gt.2011.17
  112. Barbalat R, Ewald SE, Mouchess ML, Barton GM. Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011;29:185-214. https://doi.org/10.1146/annurev-immunol-031210-101340
  113. Moon SL, Wilusz J. In vitro transcription of modified RNAs. Methods Mol Biol 2012;941:171-80.
  114. Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011;39:e142. https://doi.org/10.1093/nar/gkr695
  115. Jones KL, Drane D, Gowans EJ. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 2007;43:675-81. https://doi.org/10.2144/000112593
  116. Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000;30:1-7. https://doi.org/10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-#
  117. Paul S, Stang A, Lennartz K, Tenbusch M, Uberla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution. Nucleic Acids Res 2013;41:e29. https://doi.org/10.1093/nar/gks940
  118. Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012;30:1210-6. https://doi.org/10.1038/nbt.2436
  119. Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 2017;25:1316-27. https://doi.org/10.1016/j.ymthe.2017.03.035
  120. Ekiert DC, Friesen RH, Bhabha G, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 2011;333:843-50. https://doi.org/10.1126/science.1204839
  121. Wiersma LC, Rimmelzwaan GF, de Vries RD. Developing universal influenza vaccines: hitting the nail, not just on the head. Vaccines (Basel) 2015;3:239-62. https://doi.org/10.3390/vaccines3020239
  122. Nayak B, Kumar S, DiNapoli JM, et al. Contributions of the avian influenza virus HA, NA, and M2 surface proteins to the induction of neutralizing antibodies and protective immunity. J Virol 2010;84:2408-20. https://doi.org/10.1128/JVI.02135-09
  123. Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev 2013;26:476-92. https://doi.org/10.1128/CMR.00097-12
  124. Heinen PP, Rijsewijk FA, de Boer-Luijtze EA, Bianchi AT. Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus. J Gen Virol 2002;83:1851-9. https://doi.org/10.1099/0022-1317-83-8-1851
  125. Tumpey TM, Alvarez R, Swayne DE, Suarez DL. Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus. J Clin Microbiol 2005;43:676-83. https://doi.org/10.1128/JCM.43.2.676-683.2005
  126. Brahmakshatriya VR, Lupiani B, Reddy SM. Characterization and evaluation of avian influenza NS1 mutant virus as a potential live and killed DIVA (differentiating between infected and vaccinated animals) vaccine for chickens. Vaccine 2010;28:2388-96. https://doi.org/10.1016/j.vaccine.2009.12.074
  127. Rohrs S, Kalthoff D, Beer M. A model for early onset of protection against lethal challenge with highly pathogenic H5N1 influenza virus. Vaccine 2014;32:2631-6. https://doi.org/10.1016/j.vaccine.2014.03.019

Cited by

  1. Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? vol.10, pp.10, 2018, https://doi.org/10.3390/v10100561
  2. The Multifaceted Zoonotic Risk of H9N2 Avian Influenza vol.5, pp.4, 2018, https://doi.org/10.3390/vetsci5040082
  3. Manipulation of Non-canonical NF-κB Signaling by Non-oncogenic Viruses vol.67, pp.1, 2018, https://doi.org/10.1007/s00005-018-0522-x
  4. Monoclonal Antibody Preparation Against Nucleoprotein of Avian Influenza Virus Subtype H9N2 vol.21, pp.10, 2018, https://doi.org/10.5812/ircmj.95906
  5. Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir vol.2, pp.2, 2020, https://doi.org/10.1016/j.bsheal.2020.04.004
  6. Antigenic characterization of novel H1 influenza A viruses in swine vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-61315-5
  7. Response to a DNA vaccine against the H5N1 virus depending on the chicken line and number of doses vol.17, pp.1, 2018, https://doi.org/10.1186/s12985-020-01335-9
  8. Development and Effects of Influenza Antiviral Drugs vol.26, pp.4, 2018, https://doi.org/10.3390/molecules26040810
  9. A brief review of influenza virus infection vol.93, pp.8, 2018, https://doi.org/10.1002/jmv.26990
  10. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: a phase 1 double-blind study in healthy subjects vol.30, pp.11, 2018, https://doi.org/10.1080/13543784.2021.1994944
  11. Identification of a universal antigen epitope of influenza A virus using peptide microarray vol.17, pp.1, 2018, https://doi.org/10.1186/s12917-020-02725-5
  12. Current and prospective control strategies of influenza A virus in swine vol.7, pp.1, 2018, https://doi.org/10.1186/s40813-021-00196-0
  13. Characterization and use in neutralization assays of avian influenza codon-optimized H5 and H7 retroviral pseudotypes vol.300, pp.None, 2018, https://doi.org/10.1016/j.jviromet.2021.114391