Evaluation of Radiosensitivity to Gamma-ray Irradiation and Selection of Lines with Elite Agricultural Traits in Sorghum [Sorghum bicolor (L.) Moench]

감마선 조사에 따른 수수[Sorghum bicolor (L.) Moench]의 감수성 평가 및 우수농업형질 변이체 선발

  • Kim, Jung Min (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ryu, Jaihyunk (Division of Plant Biotechnology, Colleage of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Min-Kyu (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Gun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Hong, Min Jeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Baek (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kang, Si-Young (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ahn, Joon-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ha, Bo-Keun (Division of Plant Biotechnology, Colleage of Agriculture and Life Sciences, Chonnam National University) ;
  • Kwon, Soon-Jae (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 김정민 (한국원자력연구원 첨단방사선연구소) ;
  • 류재혁 (전남대학교 응용식물학과) ;
  • 이민규 (한국원자력연구원 첨단방사선연구소) ;
  • 김동건 (한국원자력연구원 첨단방사선연구소) ;
  • 홍민정 (한국원자력연구원 첨단방사선연구소) ;
  • 김진백 (한국원자력연구원 첨단방사선연구소) ;
  • 강시용 (한국원자력연구원 첨단방사선연구소) ;
  • 안준우 (한국원자력연구원 첨단방사선연구소) ;
  • 하보근 (전남대학교 응용식물학과) ;
  • 권순재 (한국원자력연구원 첨단방사선연구소)
  • Received : 2018.01.24
  • Accepted : 2018.03.11
  • Published : 2018.03.31

Abstract

This study was carried out to examine radio-sensitivity to gamma-rays irradiated at different doses and to determine optimal dose for mutation breeding in sorghum [Sorghum bicolor(L.) Moench]. Ten cultivars were irradiated with gamma-rays at 100, 200, 300, 400, 500, 600, 700, and 1000 Gy. The germination rate of $M_1$ seeds was gradually decreased at doses higher than 300 Gy and showed no germination over 600 Gy. Likewise, the survival rate of $M_1$ seedling decreased at doses higher than 200 Gy and there were no survival over 500 Gy in all cultivars. However, the median lethal doses($LD_{50}$) and the median reduction doses($RD_{50}$) values of the tested sorghum cultivars were slightly different between cultivars. The $LD_{50}$ was 240(DINE-A-M), 225(IS225), 335(IS2868), 180(Moktak), 214(Banwoldang), 213(ChalI), 231(ChalII), 182(KLSO79125), 287(KLSO79075), and 274(Mesusu) Gy. The $RD_{50}$ was 179(DINE-A-M), 175(IS225), 210(IS2868), 142(Moktak), 174(Banwoldang), 163(ChalI), 175(ChalII), 159(KLSO79125), 199(KLSO79075), and 195(Mesusu) Gy depending on the plant height. Afterwards, we confirmed growth characteristics and mutants of the $M_2$ generation and then were collected mutant lines better than original cultivars. As a result, we suggest that the optimal doses of gamma-ray irradiations for mutation breeding of sorghum are 180 Gy(Moktak, KLSO79125), 200 Gy(DINE-A, IS645, Banwoldang, ChalI, ChalII), 250 Gy(KLSO79075, Mesusu), and 300 Gy(IS2868). By irradiation of gamma-rays at the suggested optimal doses, we constructed $M_2$ lines for sorghum breeding.

Keywords

Acknowledgement

Supported by : 한국원자력연구원, 한국연구재단

References

  1. 강시용. 2014. 돌연변이 기술을 이용한 원예작물 육종. 원예과학기술지. 32(2):30-30.
  2. 김진영, 이수지, 하태정, 박기도, 이병원, 김상곤, 김용철, 최인수, 김선태. 2013. 국내 수수 종자 분석을 위한 프로테오믹스-기반 바이오마커 개발. 한국환경농학회지. 32(1):48-54. https://doi.org/10.5338/KJEA.2013.32.1.48
  3. 류재혁, 권순재, 임승빈, 정상욱, 안준우, 김진백, 최기춘, 김원호, 강시용. 2016. 감마선 조사가 귀리 (Avena sativa)의 감수성에 미치는 영향. 한국자원식물학회지. 29(1):128-135. https://doi.org/10.7732/KJPR.2016.29.1.128
  4. 류재혁, 소현수, 류재일, 권오도, 이영일, 진일두, 이효연, 배창휴. 2012. 방사선조사 유래의 조기출수 식물 (Oryza sativa L.) 계통의 유전적 변이 분석. 한국자원식물학회지. 25(1):142-151. https://doi.org/10.7732/kjpr.2012.25.1.142
  5. 류재혁, 임승빈, 김동섭, 안준우, 김진백, 김상훈, 강시용. 2014. 감마선 조사가 감초 (Glycyrrhiza uralensis)의 초기 생육 및 DNA 손상에 미치는 영향. 한국방사선학회지. 8(2):89-95.
  6. 방예솔, 장은희, 정현정. 2017. 발아현미 선식의 품질 및 이화학적 특성. 한국식품과학회지. 49(5):513-518. https://doi.org/10.9721/KJFST.2017.49.5.513
  7. 배창휴, 채종서, 김재홍, 양태건, 류재일, 이효엽, 양덕춘. 2005. Neutron 빔조사 담배 및 식물체의 특성. 한국자원식물학회지. 18(3):359-366.
  8. 안승현, 남상식, 방진기, 유창연, 최용환, 문윤호, 박선태, 차영록, 구본철, 박광근. 2012. 바이오에탄올 생산 유망작물 단수수 유전자원의 특성. 한국국제농업개발학회지. 24(1):32-35.
  9. 윤성탁, 許震宇, 張慶宇, 김인숙, 김태호, 남중창. 2010. 수수 유전자원의 작물학적 특성. 한국작물학회지. 55(1):83-90.
  10. 윤성탁, 정인호, 한태규, 김영중, 유제빈, 楊 景, 예민희, 백승우, 김건우. 2016. 우수자원 선발을 위한 수수 (Sorghum bicolar L.) 유전자원의 특성평가. 한국자원식물학회지. 29(4):479-494. https://doi.org/10.7732/kjpr.2016.29.4.479
  11. 은종선, 김준수, 임환수, 한석교, 최소라, 장영석. 2007. 양성자 및 감마선 처리가 유채 $M_1$ 세대의 감수성에 미치는 영향. 원예과학기술지. 25(1):17-23.
  12. 최병한, 김성국, 송득영, 조성흥, 진문섭, 박근용. 1996. 수수 도입유전자원의 생육특성 및 종실 수량성. 한국국제농업개발학회지. 8(2):143-150.
  13. 최정희, 박금순. 2015. 조청의 이용실태 및 선호도 연구. 동아시아식생활학회지. 25(6):979-989. https://doi.org/10.17495/easdl.2015.12.25.6.979
  14. Anand Y and Kajjidoni ST. 2014. Genetic enhancement of grain size and other productivity related traits through induced variability in kharif sorghm. Karnataka J. Agric. Sci. 27(2):121-124.
  15. Borzouei A, Kafi M, Khazaei H, Naseriyan B and Majdabadi A. 2010. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestibum L.) seedlings. Pak. J. Bot. 42(4):2281-2290.
  16. Chang HG and Park YS. 2005. Effects of waxy and normal sorghum flours on sponge cake properties. Food Eng. Prog. 9(3):199-207.
  17. Cvejic S, Afza R, Jocic S, Prodanovic S, Miklic V, Skoric D and Dragin S. 2011. Radiosensitivity of sunflower inbred lines to mutagenesis. Helia. 34(54):99-106. https://doi.org/10.2298/HEL1154099C
  18. Dykes L, Seitz LM, Rooney WL and Rooney LW. 2009. Flavonoid composition of red sorghum genotypes. Food Chem. 116(1):313-317. https://doi.org/10.1016/j.foodchem.2009.02.052
  19. FAO. 2016. Crop prospects and food situation - Food and Agriculture Organization of the United Nations. 4:6-29.
  20. Golubinova I and Gecheff K. 2011. M1 cytogenetic and physiological effects of gamma-rays in sudan grass [Sorghum sudanense (PIPER.) Stapf]. Bulgarian J. Agric. Sci. 17(4):417-423.
  21. Human S, Sihono S and Parno P. 2006 Application of mutation techniques in sorghum breeding for improved drought tolerance. Atom Indonesia 32(1):35-43.
  22. Htun KW, Min M and Win NC. 2015. Evaluation of genetic variability for agronomic traits in $M_2$ generation of sorghum through induced mutation. IJTRA 3(6):145-149.
  23. Iqbal A, Sadia B, Khan A, Awan F, Kainth R and Sadaqat H. 2010. Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan. Genet. Mol. Res. 9(2):756-764. https://doi.org/10.4238/vol9-2gmr741
  24. Irfaq M and Nawab K. 2001. Effect of gamma irradiation on some morphological characteristics of three wheat (Triticum aestivum L.) cultivars. J. Biol. Sci. 1(10):935-945. https://doi.org/10.3923/jbs.2001.935.937
  25. Jahansouz MR, Afshar RK, Heidari H and Hashemi M. 2014. Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan J. Agric. Sci. 10(4):699-715.
  26. Kang EJ, Lee YM, Sung SY, Ha BK, Kim SH, Kim DS, Kim J-B and Kang SY. 2013. Analysis of the genetic relationship of gamma-irradiated in vitro mutants derived from standard-type chrysanthemum cv. Migok. Hortic. Environ. Biotechnol. 54(1):76-81. https://doi.org/10.1007/s13580-013-0124-9
  27. Kimura M and Ohta T. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229:467-469. https://doi.org/10.1038/229467a0
  28. Lee MK, Ryu JH, Jeong SW, Kim JB, Kang SY and Kwon SJ. 2016. Radiosensitivity of lentil beam (Lens culinaris L.) to gamma-irradiation. J. Radiat. Ind. 10(4):211-217.
  29. Marcu D, Damian G, Cosma C and Cristea V. 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J. Biol. Phys. 39(4):625-634. https://doi.org/10.1007/s10867-013-9322-z
  30. Mehmood S, Orhan I, Ahsan Z, Aslan S and Gulfraz M. 2008. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chemistry 109(4):855-859. https://doi.org/10.1016/j.foodchem.2008.01.014
  31. Misra P, Datta S and Chakrabarty D. 2003. Mutation in flower colour and shape of Chrysanthemum morifolium induced by ${\gamma}$-radiation. Biologia Plantarum 47(1):153-156. https://doi.org/10.1023/A:1027365822769
  32. Palmer GH. 1992. Sorghum-food, beverage, and brewing potentials. Process Biochemistry 47(3):145-153.
  33. Park HS, Ko MS, Kim JT, Oh KW and Pae SB. 1999. Agronomic characteristics of common millet (Panicum miliaceum L.) varieties. Korean J. Breed 31(4):428-433.
  34. Rooney LW and Waniska RD. 2000. Sorghum food and industrial utilization. Sorghum: origin, history, technology, and production. John Wiley & Sons Inc, New York: 689-729.
  35. Ryu JH, Im SB, Kwon SJ, Ahn JW, Jeong SW and Kang SY. 2016. Chemical and genetic diversity of high-seed-yield sorghum (Sorghum bicolor M.) germplasms. Genet. Mol. Res. 15(3):gmr.15038677.
  36. Ryu JH, So HS, Syu JI, Kwon OD, Lee YI, Jin ID, LEE HY and Bae CH. 2012. Genetic variation analysis of early-heading plant (Oryza sativa L.) lines derived from gamma-ray irradiation. Korean J. Plant Res. 25(1):142-151. https://doi.org/10.7732/kjpr.2012.25.1.142
  37. Schober TJ, Bean SR and Boyle DL. 2007. Gluten-free sorghum bread improved by sourdough Fermentation: Biochemical, rheological, and microstructural background. J. Agric. Food Chem. 55(13):5137-5146. https://doi.org/10.1021/jf0704155
  38. Shikazono N, Yokota Y, Tanaka A, Watanabe H and Tano S. 1998. Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana. Genes Genet. Syst. 73(3):173-179. https://doi.org/10.1266/ggs.73.173
  39. Wada H, Koshiba T, Matsui T and Sato M. 1998. Involvement of peroxidase in differential sensitivity to ${\gamma}$-radiation in seedlings of two Nicotiana species. Plant Sci. 132(2):109-119. https://doi.org/10.1016/S0168-9452(98)00005-3
  40. Yamaguchi H, Hase Y, Tanaka A, Shikazono N, Degi K, Shimizu A and Morishita T. 2009. Mutagenic effects of ion beam irradiation on rice. Breeding Science 59(2):169-177. https://doi.org/10.1270/jsbbs.59.169