수중 방사선모니터링 시스템의 성능평가를 위한 검출기의 수중 내 유효검측거리 및 최저검출농도 산출

Determination of Effective Detection Distance and Minimum Detectable Activity for Radiation Monitoring System in Water

  • 박장근 (한국원자력연구원 동위원소연구부) ;
  • 정성희 (한국원자력연구원 동위원소연구부) ;
  • 문진호 (한국원자력연구원 동위원소연구부) ;
  • 오대민 (한국건설기술연구원 환경.플랜트연구소) ;
  • 강성원 (한국건설기술연구원 환경.플랜트연구소) ;
  • 김영석 (한국건설기술연구원 환경.플랜트연구소)
  • Park, Jang-Guen (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Jung, Sung-Hee (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Moon, Jinho (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Oh, Daemin (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Sungwon (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Youngsug (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2017.10.24
  • 심사 : 2018.02.04
  • 발행 : 2018.03.31

초록

The concerns about the potential contamination of drinking water with accidental nuclear matter have been escalated as more nuclear power plants are being constructed in many countries. Radiation monitoring systems in water environment are basically the same as the conventional ones in principle, but its structure needs to be adapted and modified so as to be suitable to the aquatic operation conditions. As a result, its specifications should be investigated in terms of the minimum detectable activity (MDA) as well as the effective detection distance (EDD) because they determine the radiation level that the monitoring system initiates the emergency action to prevent the water source from being contaminated early enough to avoid serious social commotion. In this study, the EDD and the MDA of the monitoring system fabricated by the Korea Atomic Energy Research Institute (KAERI) were measured with $^{68}Ga$ source. The $^{68}Ga$ source was mixed with water homogeneously in the experimental device, and detectable area was expanded gradually with detecting gamma emitted from $^{68}Ga$ source for EDD. Then, the gamma was also detected as a function of time for MDA, because the activity of $^{68}Ga$ decreases with its half-life. It turned out that the values were 29 cm and $5Bq{\cdot}l^{-1}$ in the experiments, respectively. Relatively short range of the EDD seems to be natural in water, but it suggests that multiple monitoring system need to be strategically installed in a body of water. the MDA value is far lower than the limitation for drinking water, which is $200Bq{\cdot}l^{-1}$ for $^{137}Cs$.

키워드

과제정보

연구 과제 주관 기관 : 국가과학기술연구회

참고문헌

  1. 강일신. 2012. 수자원의 법적 성격에 관한 고찰. 저널 물 정책.경제. 19:107-118.
  2. 국토교통부. 2016. 수자원장기종합계획 (2001-2020) 제3차 수정계획. pp. 1-131. 국토교통부.
  3. 김용제, 조수영, 윤윤열, 이길용. 2006. 극 저준위 액체섬광계수기를 이용한 지하수 중 라돈 ($^{222}Rn$) 측정법 연구. 한국지하수토양환경학회지. 11(5):59-66.
  4. 김종학, 고용석, 김준기, 박종일. 2016. 모바일 빅데이터를 활용한 재난대앙방안. 국토정책 Brief. 563:1-6.
  5. 심순보. 2014. 통합물관리 실현을 위한 물관리시스템 혁신방안. 한국수자원학회 수자원정책 비전. 4:50-61.
  6. 오대민, 강성원, 김영석, 정성희, 문진호, 박장근. 2017. 방사성 동위원소를 이용한 제염제 혼합확산장치의 유동특성분석. 대한환경공학회지. 39(5):282-287.
  7. 이기영, 한송희, 김성준. 2015. ICT 기술 기반 물 재난 관리체계 도입 방안. 경기연구원 기본연구. 2015-04:1-128.
  8. 이재응. 2013. 국가 홍수관리시스템 개발 및 활용방안. 한국수자원학회 수자원정책 비전. 2:37-46.
  9. 이주헌, 이길재. 2006. 국가 가뭄관리 정보시스템 구축. 한국수자원학회지 물과미래. 39(3):29-36.
  10. 차기욱. 2009. 가뭄재해관련 광동댐 운영 및 수자원확보방안. 한국수자원학회지 물과미래. 45(6):31-36.
  11. Bagatelas C, Tsabaris C, Kokkoris M, Papadopoulos CT and Vlastou R. 2010. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ. Monit. Assess. 165:159-168. https://doi.org/10.1007/s10661-009-0935-4
  12. Knoll GF. 2011. Radiation Detection and Measurement. Fourth Edition. pp. 321-364. John Wiley & Sons, Inc. New York.
  13. Nguyen VH, Peloquin S and Lacasses Y. 2005. Cost Effectiveness of Positron Emission Tomography for the Management of Potentially Operable Non-Small Lung Cancer in QueBec. Can. Respir. J. 12(1):19-25. https://doi.org/10.1155/2005/612387
  14. Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R and Chronis GT. 2008. An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl. Radiat. Isot. 66:1419-1426. https://doi.org/10.1016/j.apradiso.2008.02.064
  15. Viesti G, Cossutta L, Fabris D, Lunardon M, Moretto S, Nebbia G, Pesente S, Pino F and Sajo-Bohus L. 2008. Material Recognition by using a tagged $^{252}Cf$ source. Nucl. Instrum. Methods Phys. Res., Sect. A 593(3):592-596. https://doi.org/10.1016/j.nima.2008.05.024
  16. Zeng Z, Pan X, Ma H, He J, Cang J, Zeng M, Mi Y and Cheng J. 2017. Optimization of an underwater in-situ $LaBr_3$:Ce spectrometer with energy self-calibration and efficiency calibration. Appl. Radiat. Isot. 121:101-108. https://doi.org/10.1016/j.apradiso.2016.12.016
  17. Zhang Y, Li C, Liu D, Zhang Y and Liu Y. 2015. Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment. Appl. Radiat. Isot. 98:44-48. https://doi.org/10.1016/j.apradiso.2015.01.009