DOI QR코드

DOI QR Code

Development of Tree Stem Weight Equations for Larix kaempferi in Central Region of South Korea

중부지역 일본잎갈나무의 수간중량 추정식 개발

  • Ko, Chi-Ung (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Son, Yeong-Mo (Division of Forest Welfare, National Institute of Forest Science,) ;
  • Kang, Jin-Taek (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Kim, Dong-Geun (Department of Ecology Environment System, Kyungpook University)
  • 고치웅 (국립산림과학원 산림산업연구과) ;
  • 손영모 (국립산림과학원 산림복지연구과) ;
  • 강진택 (국립산림과학원 산림산업연구과) ;
  • 김동근 (경북대학교 생태환경시스템학부)
  • Received : 2018.04.18
  • Accepted : 2018.06.11
  • Published : 2018.06.30

Abstract

In this study was implemented to develop tree stem weight prediction equation of Larix kaempferi in central region by selecting a standard site, taking into account of diameter and position of the local trees. Fifty five sample trees were selected in total. By utilizing actual data of the sample trees, 11 models were compared and analyzed in order to estimate four different kinds of weights which include fresh weight, ovendry outside bark weight, ovendry inside bark weight and merchantable weight. As to estimate its weight, the study has classified its model according to three parameters: DBH, DBH and height, and volume. The optimal model was chosen by comparing the performance of model using the fit index and standard error of estimate and residual distribution. As a result, the formula utilizing DBH (Variable 1) is $W=a+bD+cD^2$ (3) and its fit index was 90~92%. The formula for DBH and height (Variable 2) is $W=aD^bH^C$ (8) and its fit index was 97~98%. In summation, Variable 2 model showed higher fitness than Variable 1 model. Moreover, fit index of formula for total volume and merchantable volume (W=aV) showed high rate of 98~99%, as well as resulting 7.7-17.5 with SEE and 8.0-10.0 with CV(%) which lead to predominately high fitness in conclusion. This study is expected to provide information on weights for single trees and furthermore, to be used as a basic study for weight of stand unit and biomass estimation equations.

본 연구는 중부지역 일본잎갈나무의 수간중량 추정식을 개발하기 위하여 지역별 개체목의 지위와 직경을 고려하여 표준지를 선정한 뒤, 총 55본의 표본목을 선정하였다. 표본목의 실측자료를 이용하여 수피외생중량, 수피외건중량, 수피내 건중량 및 이용중량 등 네종류의 중량을 추정하기 위해 11개의 모형을 비교 분석하였다. 중량을 추정하기 위해 흉고직경을 변수로 이용하는 경우, 흉고직경과 수고를 이용하는 경우, 재적을 이용하는 경우의 3개 변수에 따라 모형을 구분하였다. 최적의 모형은 적합지수와 추정의 표준오차 및 잔차의 분포를 이용하여 모형의 이행능력을 비교하여 선정하였다. 그 결과, 1변수인 흉고직경을 이용하는 식은 $W=a+bD+c^D^2$이며 설명력은 90~92%를 나타냈고, 흉고직경과 수고를 이용한 2변수식은 $W=aD^bH^C$으로 97~98%의 설명력으로 2변수 모형이 1변수 모형 보다 높은 적합도를 보였다. 또한 전체수간에 대한 재적과 이용재적에 대한 식인 W = aV로 중량추정설명력이 98~99%으로 높게 나타났고 SEE도 7.7~17.5, CV(%)도 8.0~10.0으로 우세한 적합도를 보였다. 본 연구는 개체목의 중량정보 제공 및 임분단위의 중량 바이오매스추정식의 기초연구로 활용될 것으로 판단된다.

Keywords

References

  1. Aldred, A.H. and Alemdag, I.S. 1988. Guidelines for forest biomass inventory. can. For. Serv., Petawawa national Forestry Institute Information. Report. PI-X-77. pp. 134.
  2. Evert, F. 1983. A national systems of equations for estimating ovendry mass of trembling Aspen popupus tremuloides Michx. can. For. Serv. Petawawa national Forestry Institute Information Report PI-X-24. pp. 23.
  3. Evert. F. 1985. Systems of equations for estimating ovendry mass 18 Canadian tree speices. Can. For. Serv. Petawawa national Forestry Institute Information Report PI-X-59. pp. 50.
  4. Kang, J.T., Moon, H.S., Son, Y.M. and Ahn, K.W. 2015 An Estimation on the Stem Voulme of Cryptomeria Japonica in Jeju using Kozak's Stem Taper Model. The Journal of Korean Island 27(3): 145-160.
  5. Korea Forest Service. 2017. Statistical Yearbook of Forest. pp. 441.
  6. Korea Forest Research Institute. 2012. Economic tree species 4. Research Report on Korea Forest Research Institute. Seoul, Korea, pp. 180.
  7. Lee, K.H., Son, Y.M. and Jung, Y.G. 2000. Tree stem weight equations for pinus densiflora in Kangwon province, Korea. FRI Journal of Forest Science 63: 41-50.
  8. Na, S.J., Kim, C.S., Woo, K.S., Kim, H.J. and Lee, D.H. 2011. Correlation of Above-and below-ground biomass between natural and planted stands of Pinus densiflora for. erecta of One age-class in Gangwon Provience. Journal of Korean Forest Society 100(1): 42-51.
  9. Park, I.H. and Kim, J.S. 1989. Biomass regressions of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forest Society 78(6): 320-330.
  10. Park, I.H. and Lee, S.M. 1990. Biomass and net production of Pinus densiflora national forests of four local forms in Korea. Journal of Korean Forest Society 79(6): 196-204.
  11. Schlaegel, Bryce E. 1984. Green ash voulme and weight table. Res. Pap. SO-206. New Orleans, LA. U.S. Dep. Agric.For. Serv. pp. 1-14.
  12. Seo, Y.O., Lee, Y.J., Pyo, J.K., Kim, R.H., Son, Y.M. and Lee, K.H., 2010. Above-and belowgroud biomass and net primary production for Pinus densiflora stands of Cheongyang and Boryeong regions in Chungnam. Journal of Korean Forest Society 99(6): 914-921.
  13. Seo, Y.O. and Lee, Y.J. 2010. Biomass and net primary production of Pinus densiflora stands in Gochang regions. Journal of Agriculture & Life Science 44(5): 45-53.
  14. Seo, Y.O. and Lee, Y.J. 2013. Estimation of above- and belowground biomass with consideration of age classes for Cryptomeria japonica stands. Journal of Agriculture & Life Science 47(2): 17-23.
  15. Son, Y.M., Lee, K.H., Park, I.H., Son, Y.W., Lee, Y.J., Kim, D.K. and Seo, J.H., 2005. Assesment of carbon stock sing biomass expansion factor by major species. Korean Journal of Forest Measurements 8: 91-98.
  16. Son, Y.M., Kim, H., Lee, H.Y., Kim, C.M., Kim, C.S., Kim, J.W., Joo, R.W. and Lee, K.H., 2009. Taper equations and stem voulme table of Eucaluptus pellita and Acacia mangium plantation in Indonesia. Journal of Korean Forest Society 98(6): 633-638.
  17. Son, Y.M., Lee, K.H. and Pyo, J.K. 2011. Development of biomass allometric equations for Pinus densiflora in central region and Quercus variabilis. Journal of Agriculture & Life Science 45(4): 65-72.
  18. Son, Y.M., Jeon, J.H., Pyo, J.K., Kim, K.N., Kim, S.W. and Lee, K.H., 2012. Development of Stem voulme table for Robinia pseudoacacia using Kozak's stem profile model. Journal of Agriculture & Life Science 46(6): 43-49.