DOI QR코드

DOI QR Code

Genetic Diversity of Quercus gilva in Je-ju Island

제주도 개가시나무의 유전구조와 유전적 다양성

  • Kim, Go-Un (Department of Forestry, Chonnam National University) ;
  • Jang, Kyoung-Soo (Department of Forestry, Chonnam National University) ;
  • Lim, Hyungwoo (Department of Forestry, Chonnam National University) ;
  • Kim, Eun-Hye (Faculty of Environmental and Life Sciences, Seoul Women's University) ;
  • Lee, Kye-Han (Department of Forestry, Chonnam National University)
  • 김고운 (전남대학교 산림자원학부) ;
  • 장경수 (전남대학교 산림자원학부) ;
  • 임형우 (전남대학교 산림자원학부) ;
  • 김은혜 (서울여자대학교 화학생명환경과학부) ;
  • 이계한 (전남대학교 산림자원학부)
  • Received : 2018.04.20
  • Accepted : 2018.06.09
  • Published : 2018.06.30

Abstract

This study was to analyze the genetic diversity of Quercus gilva Blume growing in Jeju Island for developing a preservation strategy. We examined the genetic diversity and structure using 6 ISSR primers and investigated 67 polymorphic ISSR amplicons in 80 trees distributed among five populations. The average of proportion of polymorphic loci were 93%, the average level of Shannon's information index was 0.237, and Nei's genetic diversity was 0.156. According to the analysis of the molecular variance (AMOVA), $F_{st}$ was 0.169 indicating there was a genetic variation among five populations. 17% of the total variation was allocated among the five populations, while the other 83% of the total variation was in individual trees in each population. The result could be due to the uneven number of trees among the five populations. Based on these results, the preservation strategy could be developed, for examples, considering for designation as "forest genetic resources conservation area" about the habitat, monitoring continuously, fostering the growth of seedling, ex situ preservation of genetic resources, and comparing the differences of environmental and genetic characteristic with population in ex situ.

본 연구는 제주도에 생육하고 있는 개가시나무(Quercus gilva Blume)에 대한 유전적 다양성을 분석하여 보전전략을 수립하기 위한 기초데이터 마련을 목적으로 하였다. 제주도 내 5집단 80개체를 대상으로 ISSR (Inter Simple Sequence Repeat) 분석을 시행하였다. 총 6개의 ISSR 프라이머를 이용하여 72개의 증폭산물을 관찰하였으며 그 중 67개의 증폭산물이 다형성이 있는 것으로 나타났다. 집단 수준에서의 다형적 유전자좌의 비율은 93%로 나타났으며, S.I. (Shannon's information index)=0.237, h (Nei's genetic diversity)=0.156로 나타났다. AMOVA 분석 결과 $F_{st}$는 0.169의 값을 보여 집단 간 분화가 큼을 나타냈다. 전체 유전변이의 17%가 집단 간 차이, 나머지 83%는 집단 내 개체 간에 존재하는 것으로 보여 집단 간의 변이보다 집단 내 변이가 더 큰 것으로 나타났다. 이와 같은 연구결과를 바탕으로 개가시나무 서식지의 산림유전자원보호구역 지정 및 지속적인 모니터링, 생육환경의 개선을 통한 치수의 생장력 강화, 현지 외 유전자원 보전 및 현지 외 개체군과의 환경적 유전적 차이 비교를 통한 보전방안을 마련해야할 필요성이 있을 것으로 사료된다.

Keywords

References

  1. Choi, T.B. 2001. Genetic structure and diversity of three oak species (Quercus, Subgen. Cyclobalanopsis) in Korea and conservation strategy for Q. acuta Thunb. ex murray. Seoul National University. pp. 189.
  2. Choi, G.E., Nam, J.I., Kim, Y.M. and Park. J.I. 2015. Genetic diversity of Lonicera caerulea var. edulis in South Korea. Korean Journal of Plant Resources 28(4): 411-418. https://doi.org/10.7732/kjpr.2015.28.4.411
  3. Dolye, J. and Dolye, J.L. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19: 11.
  4. Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin(ver. 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online. 1: 47-50.
  5. Felsenstein, J. 1993. PHYLIP v3.5c. Department of Genetics, University of Washington, Seattle.
  6. Hong, K.N., Lee, J.W. and Kang, J.T. 2013. Genetic Diversity and Population Genetic Structure of Exochorda serratifolia in South Korea. Journal of Korean Forest Society 102: 122-128. https://doi.org/10.14578/jkfs.2013.102.1.122
  7. Hyun, H.J., Song, K.M., Choi, H.S. and Kim, C.S. 2014. Dynamics and distribution of Quercus gilva Blume population in Korea. Korean Journal of Environment and Ecology 28(4): 385-392. https://doi.org/10.13047/KJEE.2014.28.4.385
  8. Jang, R.H., Kim, H.R. and You, Y.H. 2013. Effect of elevated $CO_2$ concentration and temperature on the growth response of several woody plants, including two endangered species. Korean Journal of Environment and Ecology 46(2): 234-240.
  9. Jeong, J.H., Kim, K.S., Lee, C.H. and Kim, Z.S. 2007. Genetic diversity and spatial structure in populations of Abelia tyaigyoni. Journal of Korean Forest Society 96: 667-675. (in Korean)
  10. Kang, Y.J., Suh, K.M., Son, S.K., Kim. H.J., Shin, H.C., Chae, J.W., You, H.C., Choi, H.S. and Park, J.H. 2013. Study on promising species for warming resources development. Korea Forest Research Institute. ISBN 978-89-8176-969-7.
  11. Karron, J.D. 1991. Patterns of genetic variation and breeding systems in rare plant species. pp. 87-98. In: D.A. Falk & K.E. Holsinger, eds. Genetics and conservation of rare plants. Oxford University Press, New York, U.S.A.
  12. Kim, C.S. 2006. Studies on the distribution and vegetation of the endangered wild plants in Jeju Island. Ph. D. dissertation. Jeju National University, Jeju, Korea.
  13. Kim, S.Y., Kim, Y.D., Kim, J.S., Yang, B.H., Kim, S.H. and Lee, B.C. 2009. Genetic diversity and structure of Pulsatilla tongkangensis as inferred from ISSR markers. Korean Journal of Plant Resources 23(4): 360-367. (in Korean)
  14. Kim, S.Y., Kim, Y.D., Kim, J.S., Yang, B.H., Kim, S.H. and Lee, B.C. 2009. Genetic diversity of Forsythia ovata Nakai (Oleaceae) based on inter-simple sequence repeats (ISSR). Korean Journal of Plant Taxonomy 39: 48-54. (in Korean) https://doi.org/10.11110/kjpt.2009.39.1.048
  15. Kim Y.M., Hong, K.N., Lee, J.W. and Yang, B.H. 2014. Genetic variation of Abies holophylla Populations in South Korea Based on ISSR Markers. Journal of Korean Forest Society 103: 182-188. https://doi.org/10.14578/jkfs.2014.103.2.182
  16. Laikre, L., Schwartz, M.K., Waples, R.S. and Ryman, N. 2010. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals. Trends in Ecology and Evolution 25: 520-529. https://doi.org/10.1016/j.tree.2010.06.013
  17. Lee, S.W., Kim, Y.M., Kim, W.W. and Chung, J.M. 2002. Genetic variation of ISSR markers in the natural populations of a rare and endangered tree species, Oplopanax elatus in Korea. Journal of Korean Forest Society 91: 565-573.
  18. Lee, T.B. 2003. Coloured Flora of Korea. Hyang-Mun Sa. pp. 210. Korea.
  19. Lewis, P.O. and Crawford, D.J. 1995. Pleistocene refugium endimic exhibit greater allozyme diversity than widespread congeners in the genus Polygonella (Polygonaceae). American Journal of Botany 82: 141-149. https://doi.org/10.1002/j.1537-2197.1995.tb11483.x
  20. Luan, S., Chiang, T.Y. and Gong, X. 2006. High genetic diversity vs. low genetic differentiation in Nouelia insignis(Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting. Annals of Botany 98: 583-589. https://doi.org/10.1093/aob/mcl129
  21. Maki, M. and Asada, Y-j. 1998. High genetic variability revealed by allozymic loci in the narrow endemic fern Polystichum otomasui (Dryopteridaceae). Heredity 80: 604-610. https://doi.org/10.1046/j.1365-2540.1998.00328.x
  22. Millar, C.I. and Libby, W.J. 1991. Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In D. A. Falk and K. E. Holsinger[eds.], Genetics and conservation of rare plants, pp. 149-170.
  23. Ministry of Environment. 2012. http://eng.me.go.kr
  24. Moon, M.Y., Baik, J.S., Kim, S.S., Jang, W.J., Kim, M.S. and Lee, N.H. 2009. Identification of antioxidative constituents from the branches of Quercus gilva Blume. Journal of the Society of Cosmetic Scientists of Korea, Vol. 35. pp. 251-256.
  25. Momohara, A. 1997. Quercus gilva forest in the middle part of Boso Penisula in the latest Yayoi-earliest Kofun period. Tech Bull Fac Hort China University 51: 127-136. (in Japanese)
  26. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  27. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
  28. Nybom, H. and Bartish, I.V. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution, and Systematics 3: 93-114. https://doi.org/10.1078/1433-8319-00006
  29. Primack, R.B.. Lee, S.D., Kang, H.S., Kang, H.J. and Kim, J.G. 2014. A Primer of Conservation Biology. World Science. pp. 28-29.
  30. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Population Biology 81: 8014- 8018. Proceedings of the National Academy of Sciences of the United States of America.
  31. Shannon, C.E. and Weaver. W. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois (USA).
  32. Shin, H.C., Park, N.C. and Hwang, J.H. 2006. Korean warm temperate tree species. Korea Forest Research Institute. pp. 30-31.
  33. Shin, S.K., Song J.H., Lim H.I., Jang K.H., Hong K.N. and Lee J.W. 2014. Genetic Diversity and Spatial Genetic Structure of Populus koreana Population in Mt. Odae, Korea. Journal of Korean Forest Society 103: 59-64. https://doi.org/10.14578/jkfs.2014.103.1.59
  34. Sneath, P.H.A. and Sokal, R.R. 1973. Numerical Taxonomy, Freeman San Francisco, CA (USA) pp. 573.
  35. Son, S.W., Choi, K.S., Park, K.T., Kim, E.H. and Park, S.J. 2013. Genetic Diversity and Structure of the Korea Rare and Endemic Species, Deutzia pdaniculata Nakai, as Revealed by ISSR Markers. Journal of Plant Resources 26(5): 619-627. https://doi.org/10.7732/kjpr.2013.26.5.619
  36. Sugiura, N., Kurokochi, H., Tan, E., Asakawa, S., Sato, N., Saito, Y. and Ide, Y. 2014. Development of 13 polymorphic chloroplast DNA markers in Quercus gilva, a regionally endemic species in Japan. Conservation Genet Resource. 6: 961-965. https://doi.org/10.1007/s12686-014-0256-y
  37. Suh, M.H., Koh, K.S., Ku, K.U., Kil, J.H., Choi, T.B., Suh, S.U., Oh, H.K., Lee, I.K., Na, J.G., Hyun, J.O. and Oh, J.G. 2001. Research on the conservation strategy for the endangered and reserved plants based on the ecological and genetic characteristics(I). National Institute of Environmental Research. pp.1-48.
  38. Suh, M.H., Koh, K.S., Ku, K.U., Kil, J.H., Choi, T.B., Suh, S.U., Oh, H.K., Lee, I.K., Na, J.G., Hyun, J.O. and Oh, J.G. 2002. Research on the conservation strategy for the endangered and reserved plants based on the ecological and genetic characteristics(II). National Institute of Environmental Research. pp.65-66.
  39. Ranker, T.A. 1994. Evolution of high genetic variability in the rare Hawaiian fern Adenophorus periens and implications for conservation management. Biological Conservation 70: 19-24. https://doi.org/10.1016/0006-3207(94)90294-1
  40. Xue, D.W., Ge, X.J., Hao, G. and Zhang, C.Q. 2004. High genetic diversity in a rare, narrowly endemic Primrose species: Primula interjacens by ISSR analysis. Acta Botanica Sinica 46: 1163-1169.
  41. Yeh, F.C., Yang, R.C. and Boyle, T. 1999. POPGENE version 1.31: Microsoft window-based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research. pp. 11-23. Canada.