DOI QR코드

DOI QR Code

Spatial and Temporal Assessment of Particulate Matter Using AOD Data from MODIS and Surface Measurements in the Ambient Air of Colombia

  • 투고 : 2018.02.14
  • 심사 : 2018.03.19
  • 발행 : 2018.06.30

초록

Particulate matter (PM) measurements are important in air quality, public health, epidemiological studies and decision making for short and long-term policies implementation. However, only few cities in the word have advance air quality-monitoring networks able to provide reliable information of PM leaves in the ambient air, trends and extent of the pollution. In Colombia, only major cities measure PM concentrations. Available measurements from Bogota, Medellin and Bucaramanga show that PM concentration are well above World Health Organization guidelines, but up to now levels and trends of PM in other cities and regions of the country are not well known. Satellite measurements serve as an alternative approach to study air quality in regions were surface measurements are not available. The aim of this study is to perform a spatial and temporal assessment of PM in the ambient air of Colombia. We used Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite of NASA and surface measurements from the air quality networks of Bogota, Medellin and Bucaramanga. In a first step, we estimated the correlation between MODIS-AOD and monthly average surface measurements (2000 to 2015) from these three cities, obtaining correlation coefficient R values over 0.4 for the cities under study. After, we used AOD and $PM_{10}$ measurements to study the temporal evolution of PM in different cities and regions. Finally, we used AOD measurements to identify cities and regions with the highest AOD levels in Colombia. All the methods presented in this paper may serve as an example for other countries or regions to identify and prioritize locations that require the implementation of more accurate air quality measurements.

키워드

참고문헌

  1. aqicn (2018) Contaminacion del aire de Bogota: Mapa de la calidad del aire en tiempo real. Retrieved January 2, 2018, from http://aqicn.org/map/bogota/es/.
  2. Cardenas, S.G., Arias, P.A., Vieira, S.C. (2017) The African Easterly Waves over Northern South America. Proceedings 10, 165-174.
  3. Castellanos, P., Boersma, K.F., Torres, O., De Haan, J.F. (2015) OMI tropospheric $NO_2$ air mass factors over South America: Effects of biomass burning aerosols. Atmospheric Measurement Techniques 9, 3831-3849.
  4. Chacon, L.M. (2015) Efecto De Los Incendios Forestales Sobre La Calidad Del Aire En Dos Ciudades Colombianas. Universidad Nacional de Colombia, Bogota.
  5. Comision de Regulacion de Energía y Gas (CREG), Ministerio de Minas y Energia (1999) Resolucion 071 de1999 - Reglamento Unico de Transporte de Gas Natural (RUT). Retrieved July 27, 2017, from http://www.ecopetrol.com.co/documentos/42634_CREG071-99.pdf.
  6. Cuellar, Y., Buitrago-Tello, R., Belaleazar-Ceron, L.-C. (2016) Life cycle emissions from a bus rapid transit system and comparision with other modes of passenger transportation. Ct&F-Ciencia Tecnologia Y Futuro 6,123-134. https://doi.org/10.29047/01225383.13
  7. DANE (2006) Censo General 2005. Retrieved from http://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1.
  8. Duncan, B.N., Prados, A.I., Lamsal, L.N., Liu, Y., Streets, D.G., Gupta, P., Hilsenrath, E., Kahn, R.A., Nielsen, J.E., Beyersdorf, A.J., Burton, S.P., Fiore, A.M., Fishman, J., Henze, D.K., Hostetler, C.A., Krotkov, N.A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K.E., Pierce, R.B., Yoshida, Y., Ziemba, L.D. (2014) Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment 94, 647-662. https://doi.org/10.1016/j.atmosenv.2014.05.061
  9. Environment Magistery of Colombia. V. Y. D. T. RESOLUCION 0601 DE 2006. Retrieved October 16, 2017,from http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=19983#0.
  10. Environment Magistery of Colombia. V. Y. D. T. RESOLUCION 0610 DE 2010. Retrieved October 16, 2017,from http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=39330.
  11. Environment Magistery of Colombia. V. Y D. T. RESOLUCION 18 2087 DE 2007. Retrieved January 2, 2018, from http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=28296.
  12. Fajardo, O.A., Rojas, N.Y. (2012) Particulate matter exposure of bicycle path users in a high-altitude city. Atmospheric Environment 46, 675-679. https://doi.org/10.1016/j.atmosenv.2011.09.047
  13. IDEAM (Instituto de Estudios Ambientales - Environmental Studies Institute). Retrieved January 2, 2018, from http://www.sisaire.gov.co:8080/faces/portal/default.jsp.
  14. Kumar, A., Jimenez, R., Belalcazar, L.C., Rojas, N.Y. (2016) Application of WRF-Chem model to simulate $PM_{10}$ concentration over Bogota. Aerosol and Air Quality Research 16, 1206-1221. https://doi.org/10.4209/aaqr.2015.05.0318
  15. LA MINISTRA DE AMBIENTE Y DESARROLLO TERRITORIAL (2017) Resolucion 2254 de 2017. Bogota.
  16. Lanzaco, B.L., Olcese, L.E., Palancar, G.G., Toselli, B.M. (2016) A method to improve MODIS AOD values: Application to South America. Aerosol and Air Quality Research 16, 1509-1522. https://doi.org/10.4209/aaqr.2015.05.0375
  17. National Aero Space Administration (NASA) (2016) Earth Observatory.
  18. National Aero Space Administration (NASA). Geospatial Interactive Online Visualization and Analysis Infrastructure (Giovanni). Retrieved October 16, 2017, from https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&starttime=&endtime=&bbox=-180,-90,180,90&variableFacets=dataFieldMeasurement%3AAerosolOptical Depth%3B.
  19. National Aero Space Administration (NASA). Moderate Resolution Imaging Spectroradiometer (MODIS). Web. Retrieved January 2, 2018, from https://modis.gsfc.nasa.gov/.
  20. National Congress of Colombia. Ley 1205 de 2008 Nivel Nacional: niveles de azufre en combustibles a nivel nacional. Retrieved January 2, 2018, from http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=31441.
  21. Perez P, M.P., Henderson, B.H., Nedbor-Gross, R., Pachon, J.E. (2016) Natural mitigation factor adjustment for resuspended particulate matter emissions inventory for Bogota, Colombia. Atmospheric Pollution Research, Submitted, 1-9.
  22. Ramirez, O., AM, S. de la C., Amato, F., Catacoli, R.A., Rojas, N.Y., de la Rosa, J. (2018) Chemical composition and source apportionment of $PM_{10}$ at an urban background site in a high e altitude Latin American megacity. Environmental Pollution Journal 233, 142-155. https://doi.org/10.1016/j.envpol.2017.10.045
  23. Ramos, R., Cantillo, V., Arellana, J., Sarmiento, I. (2017) From restricting the use of cars by license plate numbers to congestion charging: Analysis for Medellin, Colombia. Transport Policy 60, 119-130. https://doi.org/10.1016/j.tranpol.2017.09.012
  24. Reddington, C.L., Butt, E.W., Ridley, D.A., Artaxo, P., Morgan, W.T., Coe, H., Spracklen, D.V. (2015) Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience 10, 768-771.
  25. Rodriguez-Villamizar, L.A., Berney, C., Villa-Roel, C., Ospina, M.B., Osornio-Vargas, A., Rowe, B.H. (2016) The role of socioeconomic position as an effect-modifier of the association between outdoor air pollution and children's asthma exacerbations: An equity-focused systematic review. Reviews on Environmental Health 31,297-309.
  26. Rodriguez-Villamizar, L.A., Castro-Ortiz, H., Rey-Serrano, J.J. (2012) The effects of air pollution on respiratory health in susceptible populations: a multilevel study in Bucaramanga, Colombia. Cadernos de Saude Publica 28, 749-757. https://doi.org/10.1590/S0102-311X2012000400014
  27. Rojas, N., Rojas, J., Físicas, F.D.C., Nacional, U., San, M. De. (2015) Study of the dynamics of aerosol optical thickness in Perú and satellites in 2000-2013 period. Revista de Investigacion de Física, 18.
  28. Sarigiannis, D.A., Karakitsios, S.P., Kermenidou, M.V. (2015) Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of the Total Environment 524-525, 319-330. https://doi.org/10.1016/j.scitotenv.2015.02.108
  29. Saunders, R.O., Kahl, J.D.W., Ghorai, J.K. (2014) Improved estimation of $PM_{2.5}$ using Lagrangian satellitemeasured aerosol optical depth. Atmospheric Environment 91, 146-153. https://doi.org/10.1016/j.atmosenv.2014.03.060
  30. Secretaria Distrital de Ambiente (SDA). Red de Monitoreo de Calidad del Aire de Bogota (RMCAB)-Ambiente Bogota - Secretaria Distrital de Ambiente. Retrieved October 2, 2017, from http://201.245.192.252:81/.
  31. SDA-RMCAB (2016) Secretaria Distrital de Ambiente de Bogota - Red de Monitoreo de la Calidad del Aire.
  32. SIAC, IDEAM (2015) Informe nacional del aire - IDEAM. Retrieved March 18, 2018, from http://www.siac.gov.co/informenalaire.
  33. Silva, R.a., West, J.J., Zhang, Y., Anenberg, S.C., Lamarque, J.-F., Shindell, D.T., Collins, W.J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L.W., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R.M., Eyring, V., Josse, B., MacKenzie, I.a., Plummer, D., Righi, M., Stevenson, D.S., Strode, S., Szopa, S., Zeng, G. (2013) Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 8.
  34. Tomasi, C., Lupi, A., Mazzola, M., Stone, R.S., Dutton, E.G., Herber, A., Radionov, V.F., Holben, B.N., Sorokin, M.G., Sakerin, S.M., Terpugova, S.A., Sobolewski, P.S., Lanconelli, C., Petkov, B.H., Busetto, M., Vitale, V. (2012) An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year. Atmospheric Environment 52, 29-47. https://doi.org/10.1016/j.atmosenv.2012.02.055
  35. University Corporation for Atmospheric Research (UCAR). Unidata.Network Common Data Form (NetCDF). Network Common Data Form (NetCDF) Retrieved January 2, 2018, from ttps://www.unidata.ucar.edu/software/netcdf/.
  36. Universidad Pontificia Bolivariana (UPB). Seguimiento de la Calidad del Aire en el Valle de Aburra (SCALAR) RMCA de Medellin. Retrieved October 17, 2017, from http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=category&layout=blog&id=93&Itemid=500.
  37. Verma, S., Boucher, O., Upadhyaya, H.C., Sharma, O.P. (2013) Variations in sulphate aerosols concentration during winter monsoon season for two consecutive years using a general circulation model. Atmosfera 26, 360-367.
  38. Vijayakumar, K., Devara, P.C.S. (2012) Variations in aerosol optical and microphysical properties during an Indian festival observed with space-borne and ground-based observations. Atmosfera 25, 381-395.
  39. WHO (2006) Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. World Health Organization.
  40. Yan, X., Shi, W.Z., Zhao, W.J., Luo, N.N. (2014) Impact of aerosols and atmospheric particles on plant leaf proteins. Atmospheric Environment 88, 115-122. https://doi.org/10.1016/j.atmosenv.2014.01.044
  41. Zarate, E., Carlos Belalcazar, L., Clappier, A., Manzi, V., Van den Bergh, H. (2007) Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment 41, 6302-6318. https://doi.org/10.1016/j.atmosenv.2007.03.011
  42. Zimmerman, W.B., Zandi, M., Hemaka Bandulasena, H.C., Tesar, V., James Gilmour, D., Ying, K. (2011) Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Applied Energy 88, 3357-3369. https://doi.org/10.1016/j.apenergy.2011.02.013

피인용 문헌

  1. Satellite Based Interpretation of Stability Parameters on Convective Systems over India and Srilanka vol.14, pp.2, 2018, https://doi.org/10.5572/ajae.2020.14.2.119
  2. A CMOS Hall sensor modeling with readout circuitry and microcontroller processing for magnetic detection vol.92, pp.3, 2018, https://doi.org/10.1063/5.0038295
  3. Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions vol.13, pp.16, 2018, https://doi.org/10.3390/rs13163102