참고문헌
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally graded materials: A critical review", Int. J. Res., 1(7), 289-301.
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Brajesh, P. and Goutam, P. (2016), "Nonlinear modelling and dynamic analysis of cracked Timoshenko functionally graded beams based on neutral surface approach", J. Mech. Eng. Sci., 230(9), 1468-1497.
- Broek, D. (1986), Elementary Engineering Fracture Mechanics, Springer.
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materials", Eng. Fract. Mech., 73(6), 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008
- Chakrabarty, J. (2006), Theory of Plasticity, Elsevier Butterworth-Heinemann, Oxford.
- Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016c), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.
- Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Ebrahimi, F. and Barati, M.R. (2016d), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
- Ebrahimi, F. and Barati, M.R. (2016g), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci. Eng., 39(3), 937-952.
- Ebrahimi, F. and Farzamandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng.
- Ebrahimi, F. and Salari, E. (2015), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES Comput. Model. Eng. Sci., 105(2), 151-181.
- Ebrahimi, F. and Shafiei, N. (2016), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772.
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 24(3), 549-564.
- Ebrahimi, F., Javad, E. and Ramin, B. (2016), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., 5(4), 245-261. https://doi.org/10.12989/amr.2016.5.4.245
- Erdogan, F. (1995), "Fracture mechanics of functionally graded materials", Comp. Eng., 5(7), 753-770. https://doi.org/10.1016/0961-9526(95)00029-M
- Gasik, M.M. (2010), "Functionally graded materials: Bulk processing techniques", Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257
- Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441
- Hadji, L., Khelifa, Z., Daouadji, T.H. and Bedia, E.A. (2015), "Static bending and free vibration of FGM beam using an exponential shear deformation theory", Coupled Syst. Mech., 4(1), 99-114. https://doi.org/10.12989/csm.2015.4.1.099
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509
- Koizumi, M. (1993), "The concept of FGM ceramic trans", Function. Grad. Mater., 34(1), 3-10.
- Ke, L.L., Yang, J. and Kitiporncha, S. (2009), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening, Compos. Struct., 90, 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-dimensional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Meth. Eng., 79(3), 25-44. https://doi.org/10.1002/nme.2555
- Lubliner, J. (2006), Plasticity Theory, Revised Edition, University of California, Berkeley, California, U.S.A.
- Markworth, A.J., Ramesh, K.S. and Parks, J.W.P. (1995), "Review: Modeling studies applied to functionally graded materials", J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560
- Mortensen, A. and Suresh, S. (1995), "Functionally graded metals and metal-ceramic composites: Part 1 processing", Int. Mater. Rev., 40(6), 239-265. https://doi.org/10.1179/imr.1995.40.6.239
- Naser, S.A.H. and Sami, T.A. (2017), "Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source", Adv. Mater. Res., 6(1), 27-43. https://doi.org/10.12989/amr.2017.6.1.027
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material", Mater. Scie. Appl., 2(5), 1708-1718.
- Neubrand, A. and Rodel, J. (1997), "Gradient materials: An overview of a novel concept", Zeit. f. Met., 88(4), 358-371.
- Paulino, G.C. (2002), "Fracture in functionally graded materials", Eng. Fract. Mech., 69(5), 1519-1530. https://doi.org/10.1016/S0013-7944(02)00045-0
- Petrov, V.V. (2014), Non-Linear Incremental Structural Mechanics, M.: Infra-Injeneria.
- Rizov, V.I. (2017b), "Non-linear analysis of delamination fracture in functionally graded beams", Coupled Syst. Mech., 6(1), 97-111. https://doi.org/10.12989/csm.2017.6.1.097
- Rizov, V.I. (2017a), "Delamination fracture in a functionally graded multilayered beam with material nonlinearity", Arch. Appl. Mech., 87(6), 1037-1048. https://doi.org/10.1007/s00419-017-1229-x
- Rizov, V.I. (2017c), "An analytical solution to the strain energy release rate of a crack in functionally graded nonlinear elastic beams", Eur. J. Mech. A/Sol., 65, 301-312. https://doi.org/10.1016/j.euromechsol.2017.04.005
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded composites", Compos. Sci. Technol., 65(2), 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004
- Upadhyay, A.K. and Simha, K.R.Y. (2007), "Equivalent homogeneous variable depth beams for cracked FGM beams; compliance approach", Int. J. Fract., 144(2), 209-213. https://doi.org/10.1007/s10704-007-9089-y
- Zhang, H., Li, X.F., Tang, G.J. and Shen, Z.B. (2013), "Stress intensity factors of double cantilever nanobeams via gradient elasticity theory", Eng. Fract. Mech., 105(1), 58-64. https://doi.org/10.1016/j.engfracmech.2013.03.005