DOI QR코드

DOI QR Code

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan (Department of Engineering Mechanics, Kunming University of Science and Technology) ;
  • Yan, Yan (Department of Engineering Mechanics, Kunming University of Science and Technology)
  • Received : 2017.12.04
  • Accepted : 2018.01.31
  • Published : 2018.08.25

Abstract

In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China, Fok Ying Tung Education Foundation

References

  1. Alligne, S., Maruzewski, P., Dinh, T., Wang, B., Fedorov, A., Iosfin, J. and Avellan, F. (2010), "Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012025. https://doi.org/10.1088/1755-1315/12/1/012025
  2. Cherny, S., Chirkov, D., Bannikov, D., Lapin, V., Skorospelov, V., Eshkunova, I. and Avdushenko, A. (2010), "3D numerical simulation of transient processes in hydraulic turbines", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012071. https://doi.org/10.1088/1755-1315/12/1/012071
  3. Chirkov, D., Avdyushenko, A., Panov, L., Bannikov, D., Cherny, S., Skorospelov, V. and Pylev, I. (2012), "CFD simulation of pressure and discharge surge in Francisturbine at off-design conditions", IOP Conf. Ser.: Earth Environ. Sci., 15, 032038. https://doi.org/10.1088/1755-1315/15/3/032038
  4. De, J.E., Janssens, N. and Malfhet, B. (1994), "Hydro turbine model for system dynamic studies", Trans. Pow. Syst., 9(4), 1709-1714. https://doi.org/10.1109/59.331421
  5. Germano, M., Piomelli, U., Moin, P. and Cabot, W. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Flu. A, 3(7), 1760-1765. https://doi.org/10.1063/1.857955
  6. Gilmanov, A. and Sotiropoulos, F. (2005), "A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies", J. Comput. Phys., 207(2), 457-492. https://doi.org/10.1016/j.jcp.2005.01.020
  7. Gorla, R.S.R., Pai, S.S. and Blankson, I. (2005), "Unsteady fluid structure interaction in a turbine blade", Proceedings of the ASME Turbo. Expo., Nevada, U.S.A.
  8. Hasmatuchi, V., Farhat, M. and Roth, S. (2011), "Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode", J. Flu. Eng., 133(5), 051104. https://doi.org/10.1115/1.4004088
  9. Jain, S.V. and Patel, R.H. (2014), "Investigations on pump running in turbine mode: A review of the state-of-the-art", Renew. Sus. Energy Rev., 30, 841-868. https://doi.org/10.1016/j.rser.2013.11.030
  10. Jiang, Y.Y., Yoshimura, S. and Imai, R. (2010), "Quantitative evaluation of flow-induced structural vibration and noise in turbo-machinery by full-scale weakly coupled simulation", J. Flu. Struct., 23(4), 531-544. https://doi.org/10.1016/j.jfluidstructs.2006.10.003
  11. Kang, S., Lightbody, A., Hill, C. and Sotiropoulos, F. (2011), "High-resolution numerical simulation of turbulence in natural waterways", Adv. Wat. Res., 34(1), 98-113. https://doi.org/10.1016/j.advwatres.2010.09.018
  12. Keck, H. and Sick, M. (2008), "Thirty years of numerical flow simulation in hydraulic turbomachines", Acta Mech., 201(1-4), 211-229. https://doi.org/10.1007/s00707-008-0060-4
  13. Li, D., Wang, H. and Xiang, G. (2015), "Unsteady simulation and analysis for hump characteristics of a pump turbine model", Renew. Energy, 77, 32-42. https://doi.org/10.1016/j.renene.2014.12.004
  14. Li, J., Yu, J. and Wu, Y. (2010), "3D unsteady turbulent simulations of transients of the Francis turbine", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012001.
  15. Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Flu., 4(3), 633-635. https://doi.org/10.1063/1.858280
  16. Liu, J., Liu, S. and Sun, Y. (2013a), "Three-dimensional flow simulation of transient power interruption process of a prototype pump turbine at pump mode", J. Mech. Sci. Technol., 27(5), 1305-1312. https://doi.org/10.1007/s12206-013-0313-6
  17. Liu, J., Liu, S. and Sun, Y. (2013b), "Three dimensional flow simulation of load rejection of a prototype pump-turbine", Eng. Comput., 29(4), 417-426. https://doi.org/10.1007/s00366-012-0258-x
  18. Mittal, R. and Iaccarino, G. (2005), "Immersed boundary methods", Annu. Rev. Flu. Mech., 37, 239-261. https://doi.org/10.1146/annurev.fluid.37.061903.175743
  19. Nicolet, C. (2007), "Hydroacoustic modeling and numerical simulation of unsteady operation of hydroelectric systems", Ph.D. Dissertation, EPFL, Lausanne, Switzerland.
  20. Nicolle, J., Morissette, J.F. and Giroux, A.M. (2012), "Transient CFD simulation of a Francis turbine startup", IOP Conf. Ser.: Earth Environ. Sci., 15(6), 062014. https://doi.org/10.1088/1755-1315/15/6/062014
  21. Olimstad, G., Nielsen, T. and Borresen, B. (2012), "Stability limits of reversible-pump turbines in turbine mode of operation and measurements of unstable characteristics", J. Flu. Eng., 134(11), 111202. https://doi.org/10.1115/1.4007589
  22. Peskin, C. (2003), "The immersed boundary method", Acta Numer., 11, 479-517.
  23. Peskin, C. (1972), "Flow patterns around heart valves: a numerical method", J. Comput. Phys., 10, 252-271. https://doi.org/10.1016/0021-9991(72)90065-4
  24. Sotiropoulos, F. and Yang, X. (2014), "Immersed boundary methods for simulating fluid-structure interaction", Progr. Aerosp. Sci., 65, 1-21. https://doi.org/10.1016/j.paerosci.2013.09.003
  25. Udaykumar, H.S., Kan, H.C., Shyy, W. and Tran-Son-Tay, R. (1997), "Multiphase dynamics in arbitrary geometries on fixed Cartesian grids", J. Comput. Phys., 137(2), 366-405. https://doi.org/10.1006/jcph.1997.5805
  26. Udaykumar, H.S., Mittal, R. and Shyy, W. (1999), "Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids", J. Comput. Phys., 153(2), 535-574. https://doi.org/10.1006/jcph.1999.6294
  27. Wang, M. and Moin, P. (2002), "Dynamic wall modeling for large eddy simulation of complex turbulent flows", Phys. Flu., 14(7), 2043-2051. https://doi.org/10.1063/1.1476668
  28. Wang, W.Q., He, X.Q. and Zhang, L.X. (2010), "Strongly coupled simulation of fluid-structure interaction in a Francis hydroturbine", Int. J. Numer. Meth. Fl., 60(5), 515-538. https://doi.org/10.1002/fld.1898
  29. Wang, W.Q., Zhang, L.X. and Guo, Y. (2010), "Turbulent flow simulation using LES with dynamical mixed one-equation subgrid models in complex geometries", Int. J. Numer. Meth. Fl., 63(5), 600-621. https://doi.org/10.1002/fld.2092
  30. Werner, V.N. and Peter, N. (2004), "Goldithal-4X265MW pump turbines in Germany: Special mechanical design feathers and comparison between stationary and variable speed operation", Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden.
  31. Widmer, C., Staubli, T. and Ledergerber, N. (2011), "Unstable characteristics and rotating stall in turbine brake operation of pump-turbines", J. Flu. Eng., 133(4), 041101. https://doi.org/10.1115/1.4003874
  32. Yin, J., Wang, D. and Keith, W.D. (2014), "Investigation of the unstable flow phenomenon in a pump turbine", Sci. Chin. (Phys. Mech. Astronom.), 57(6), 1119-1127. https://doi.org/10.1007/s11433-013-5211-5
  33. Zhang, L.X., Wang, W.Q. and Guo, Y. (2010), "Numerical simulation of flow features and energy exchanging physics in near-wall region with fluid-structure interaction", Int. J. Mod. Phys. B, 22(6), 1-19.
  34. Zhang, X.X. and Cheng, Y.G. (2012), "Simulation of hydraulic transients in hydropower systems using the 1-D-3-D coupling approach", J. Hydrodyn., 24(4), 595-604. https://doi.org/10.1016/S1001-6058(11)60282-5

Cited by

  1. Daily influent variation for dynamic modeling of wastewater treatment plants vol.9, pp.2, 2018, https://doi.org/10.12989/csm.2020.9.2.111