Acknowledgement
Supported by : Natural Science Foundation of China, Fok Ying Tung Education Foundation
References
- Alligne, S., Maruzewski, P., Dinh, T., Wang, B., Fedorov, A., Iosfin, J. and Avellan, F. (2010), "Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012025. https://doi.org/10.1088/1755-1315/12/1/012025
- Cherny, S., Chirkov, D., Bannikov, D., Lapin, V., Skorospelov, V., Eshkunova, I. and Avdushenko, A. (2010), "3D numerical simulation of transient processes in hydraulic turbines", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012071. https://doi.org/10.1088/1755-1315/12/1/012071
- Chirkov, D., Avdyushenko, A., Panov, L., Bannikov, D., Cherny, S., Skorospelov, V. and Pylev, I. (2012), "CFD simulation of pressure and discharge surge in Francisturbine at off-design conditions", IOP Conf. Ser.: Earth Environ. Sci., 15, 032038. https://doi.org/10.1088/1755-1315/15/3/032038
- De, J.E., Janssens, N. and Malfhet, B. (1994), "Hydro turbine model for system dynamic studies", Trans. Pow. Syst., 9(4), 1709-1714. https://doi.org/10.1109/59.331421
- Germano, M., Piomelli, U., Moin, P. and Cabot, W. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Flu. A, 3(7), 1760-1765. https://doi.org/10.1063/1.857955
- Gilmanov, A. and Sotiropoulos, F. (2005), "A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies", J. Comput. Phys., 207(2), 457-492. https://doi.org/10.1016/j.jcp.2005.01.020
- Gorla, R.S.R., Pai, S.S. and Blankson, I. (2005), "Unsteady fluid structure interaction in a turbine blade", Proceedings of the ASME Turbo. Expo., Nevada, U.S.A.
- Hasmatuchi, V., Farhat, M. and Roth, S. (2011), "Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode", J. Flu. Eng., 133(5), 051104. https://doi.org/10.1115/1.4004088
- Jain, S.V. and Patel, R.H. (2014), "Investigations on pump running in turbine mode: A review of the state-of-the-art", Renew. Sus. Energy Rev., 30, 841-868. https://doi.org/10.1016/j.rser.2013.11.030
- Jiang, Y.Y., Yoshimura, S. and Imai, R. (2010), "Quantitative evaluation of flow-induced structural vibration and noise in turbo-machinery by full-scale weakly coupled simulation", J. Flu. Struct., 23(4), 531-544. https://doi.org/10.1016/j.jfluidstructs.2006.10.003
- Kang, S., Lightbody, A., Hill, C. and Sotiropoulos, F. (2011), "High-resolution numerical simulation of turbulence in natural waterways", Adv. Wat. Res., 34(1), 98-113. https://doi.org/10.1016/j.advwatres.2010.09.018
- Keck, H. and Sick, M. (2008), "Thirty years of numerical flow simulation in hydraulic turbomachines", Acta Mech., 201(1-4), 211-229. https://doi.org/10.1007/s00707-008-0060-4
- Li, D., Wang, H. and Xiang, G. (2015), "Unsteady simulation and analysis for hump characteristics of a pump turbine model", Renew. Energy, 77, 32-42. https://doi.org/10.1016/j.renene.2014.12.004
- Li, J., Yu, J. and Wu, Y. (2010), "3D unsteady turbulent simulations of transients of the Francis turbine", IOP Conf. Ser.: Earth Environ. Sci., 12(1), 012001.
- Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Flu., 4(3), 633-635. https://doi.org/10.1063/1.858280
- Liu, J., Liu, S. and Sun, Y. (2013a), "Three-dimensional flow simulation of transient power interruption process of a prototype pump turbine at pump mode", J. Mech. Sci. Technol., 27(5), 1305-1312. https://doi.org/10.1007/s12206-013-0313-6
- Liu, J., Liu, S. and Sun, Y. (2013b), "Three dimensional flow simulation of load rejection of a prototype pump-turbine", Eng. Comput., 29(4), 417-426. https://doi.org/10.1007/s00366-012-0258-x
- Mittal, R. and Iaccarino, G. (2005), "Immersed boundary methods", Annu. Rev. Flu. Mech., 37, 239-261. https://doi.org/10.1146/annurev.fluid.37.061903.175743
- Nicolet, C. (2007), "Hydroacoustic modeling and numerical simulation of unsteady operation of hydroelectric systems", Ph.D. Dissertation, EPFL, Lausanne, Switzerland.
- Nicolle, J., Morissette, J.F. and Giroux, A.M. (2012), "Transient CFD simulation of a Francis turbine startup", IOP Conf. Ser.: Earth Environ. Sci., 15(6), 062014. https://doi.org/10.1088/1755-1315/15/6/062014
- Olimstad, G., Nielsen, T. and Borresen, B. (2012), "Stability limits of reversible-pump turbines in turbine mode of operation and measurements of unstable characteristics", J. Flu. Eng., 134(11), 111202. https://doi.org/10.1115/1.4007589
- Peskin, C. (2003), "The immersed boundary method", Acta Numer., 11, 479-517.
- Peskin, C. (1972), "Flow patterns around heart valves: a numerical method", J. Comput. Phys., 10, 252-271. https://doi.org/10.1016/0021-9991(72)90065-4
- Sotiropoulos, F. and Yang, X. (2014), "Immersed boundary methods for simulating fluid-structure interaction", Progr. Aerosp. Sci., 65, 1-21. https://doi.org/10.1016/j.paerosci.2013.09.003
- Udaykumar, H.S., Kan, H.C., Shyy, W. and Tran-Son-Tay, R. (1997), "Multiphase dynamics in arbitrary geometries on fixed Cartesian grids", J. Comput. Phys., 137(2), 366-405. https://doi.org/10.1006/jcph.1997.5805
- Udaykumar, H.S., Mittal, R. and Shyy, W. (1999), "Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids", J. Comput. Phys., 153(2), 535-574. https://doi.org/10.1006/jcph.1999.6294
- Wang, M. and Moin, P. (2002), "Dynamic wall modeling for large eddy simulation of complex turbulent flows", Phys. Flu., 14(7), 2043-2051. https://doi.org/10.1063/1.1476668
- Wang, W.Q., He, X.Q. and Zhang, L.X. (2010), "Strongly coupled simulation of fluid-structure interaction in a Francis hydroturbine", Int. J. Numer. Meth. Fl., 60(5), 515-538. https://doi.org/10.1002/fld.1898
- Wang, W.Q., Zhang, L.X. and Guo, Y. (2010), "Turbulent flow simulation using LES with dynamical mixed one-equation subgrid models in complex geometries", Int. J. Numer. Meth. Fl., 63(5), 600-621. https://doi.org/10.1002/fld.2092
- Werner, V.N. and Peter, N. (2004), "Goldithal-4X265MW pump turbines in Germany: Special mechanical design feathers and comparison between stationary and variable speed operation", Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden.
- Widmer, C., Staubli, T. and Ledergerber, N. (2011), "Unstable characteristics and rotating stall in turbine brake operation of pump-turbines", J. Flu. Eng., 133(4), 041101. https://doi.org/10.1115/1.4003874
- Yin, J., Wang, D. and Keith, W.D. (2014), "Investigation of the unstable flow phenomenon in a pump turbine", Sci. Chin. (Phys. Mech. Astronom.), 57(6), 1119-1127. https://doi.org/10.1007/s11433-013-5211-5
- Zhang, L.X., Wang, W.Q. and Guo, Y. (2010), "Numerical simulation of flow features and energy exchanging physics in near-wall region with fluid-structure interaction", Int. J. Mod. Phys. B, 22(6), 1-19.
- Zhang, X.X. and Cheng, Y.G. (2012), "Simulation of hydraulic transients in hydropower systems using the 1-D-3-D coupling approach", J. Hydrodyn., 24(4), 595-604. https://doi.org/10.1016/S1001-6058(11)60282-5
Cited by
- Daily influent variation for dynamic modeling of wastewater treatment plants vol.9, pp.2, 2018, https://doi.org/10.12989/csm.2020.9.2.111