DOI QR코드

DOI QR Code

Identification and Quantification of Phytosterols in Maize Kernel and Cob

옥수수 종실 및 속대의 Phytosterol 동정과 함량 변이

  • Kim, Sun-Lim (Department of Central Area Crop Science, NICS, RDA) ;
  • Kim, Mi-Jung (Research Policy Bureau of Rural Development Administration) ;
  • Jung, Gun-Ho (Department of Central Area Crop Science, NICS, RDA) ;
  • Lee, Yu-Young (Department of Central Area Crop Science, NICS, RDA) ;
  • Son, Beom-Young (Department of Central Area Crop Science, NICS, RDA) ;
  • Kim, Jung-Tae (Department of Central Area Crop Science, NICS, RDA) ;
  • Lee, Jin-Seok (Department of Central Area Crop Science, NICS, RDA) ;
  • Bae, Hwan-Hee (Department of Central Area Crop Science, NICS, RDA) ;
  • Go, Young-Sam (Department of Central Area Crop Science, NICS, RDA) ;
  • Kim, Sang-Gon (Department of Central Area Crop Science, NICS, RDA) ;
  • Baek, Seong-Bum (Department of Central Area Crop Science, NICS, RDA)
  • 김선림 (국립식량과학원 중부작물부) ;
  • 김미정 (농촌진흥청 연구정책국) ;
  • 정건호 (국립식량과학원 중부작물부) ;
  • 이유영 (국립식량과학원 중부작물부) ;
  • 손범영 (국립식량과학원 중부작물부) ;
  • 김정태 (국립식량과학원 중부작물부) ;
  • 이진석 (국립식량과학원 중부작물부) ;
  • 배환희 (국립식량과학원 중부작물부) ;
  • 고영삼 (국립식량과학원 중부작물부) ;
  • 김상곤 (국립식량과학원 중부작물부) ;
  • 백성범 (국립식량과학원 중부작물부)
  • Received : 2018.05.26
  • Accepted : 2018.06.14
  • Published : 2018.06.30

Abstract

Unsaponifiables in the kernel and the cob of 7 maize varieties were analyzed by using thin-layer chromatography (TLC) and gas chromatography (GC) for the identification of phytosterols and their concentrations. The unsaponifiables of the kernel were clearly separated into band I (campesterol, stigmasterol, and ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$- stigmastenol), and band IV (${\Delta}^7$-avenasterol). In the cob, on the other hand, three or more bands were separated in addition to bands. The GC analysis of unsaponifiables showed good separation of campesterol, stigmasterol and ${\beta}$-sitosterol, but the mixture of ${\Delta}^7$-avenasterol (retention time[RT] 22.846), ${\Delta}^7$-stigmastenol (RT 22.852), and ${\Delta}^5$-avenasterol (RT 22.862) showed poor separation. Phytosterol content of the maize kernel was 635.9 mg/100 g, and that of the cob was 273.0 mg/100 g, respectively. The phytosterol content of the kernel was 2.4-fold higher than that of the cob. The phytosterol content of the kernel was higher in the order ${\beta}$sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46%, but that of the cob was higher in the order ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%. Based on these results, it appears that the phytosterols of the maize kernel are synthesized in the maize cob and are transferred to the kernel, because the precursors (${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol, and ${\Delta}^5$-avenasterol) of major phytosterols were detected in maize cobs.

옥수수 종실(kernel)과 속대(cob)의 불검화물(ZML) 중 phytosterol의 조성과 함량의 변이를 구명하여 고품질 옥수수 신품종 육성 및 생리활성물질의 유용 소재화를 위한 기초자료로 활용하고자 본 연구를 실시하여 얻어진결과를 요약하면 다음과 같다. 1. 옥수수 종실과 속대의 포화지방산은 phytosterol 함량과 부의 상관관계의 경향이었고, 불포화지방산 중 stearic 및 linoleic acid는 정상관 경향을 보였으나, linolenic acid는 종실에서 정상관($r=0.652^*$), 속대는 부상관($r=-0.505^*$) 관계를 보였다. 2. 옥수수 종실의 불검화물을 TLC로 분리한 결과 band I (campesterol, stigmasterol, ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$-stigmastenol), 및 band IV (${\Delta}^7$-avenasterol)로 뚜렷하게 분리되었고, 속대는 band I~IV 이외에도 3종 이상의 band가 추가적으로 분리되었다. 3. 옥수수 종실과 속대에 함유된 phytosterol의 GC 분리 패턴을 확인한 결과 campesterol, stigmasterol 및 ${\beta}$-sitosterol의 분리능이 좋았으나, ${\Delta}^7$-avenasterol (RT 22.846), ${\Delta}^7$-stigmastenol (RT 22.852) 및 ${\Delta}^5$-avenasterol (RT 22.862)은 혼합물질 상태로는 분리가 되질 않았다. 4. 옥수수 종실의 평균 phytosterol 함량은 635.9 mg/100g, 속대는 273.0 mg/100 g으로 종실이 속대에 비해 약 2.4배 정도 phytosterol 함량이 높았다. 옥수수 종실의 phytosterol 조성은 ${\beta}$-sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46% 순이었으나, 속대는 ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%으로 종실과 속대의 phytosterol 조성비는 다소 상이하였다. 5. 본 연구 결과를 토대로 판단할 때 옥수수 종실에 함유된 ${\beta}$-sitosterol, campesterol 및 stigmasterol의 생합성 경로에서 전구물질이 되는 ${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol 및 ${\Delta}^5$-avenasterol이 옥수수 속대에서 검출되는 것으로 보아 옥수수 종실의 phytosterol은 속대에서 합성되어 종실로 전이되는 물질인 것으로 추정되었다.

Keywords

References

  1. Abidi S. L. 2001. Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A. 935 : 173-201. https://doi.org/10.1016/S0021-9673(01)00946-3
  2. Abidi S. L., G. R. List, and K. A. Rennick. 1999. Effect of genetic modification on the distribution of minor constituents in canola oil. J. Am. Oil Chem. Soc. 76 : 463-467. https://doi.org/10.1007/s11746-999-0025-3
  3. Ayerdi G. A., M. Berger, F. Labalette, S. Centis, J. Dayde, and A. Calmon 2015. Comparative analysis of fatty acids, tocopherols and phytosterols content in sunflower cultivars (Helianthus annuus) from a three-year multi-local study. ${\Phi}YTON$ 84 : 14-25.
  4. Azadmard-Damirchi S. 2010. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Addit Contam. 27 : 1-10. https://doi.org/10.1080/02652030903225773
  5. Azadmard-Damirchi S., G. P. Savage, and P. C. Dutta. 2005. Sterol fractions in hazelnut and virgin olive oils and 4,4'-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J. Am. Oil Chem. Soc. 82 : 717-725. https://doi.org/10.1007/s11746-005-1133-y
  6. Barl B., C. Biliaderis, E. Murray, and A. Macgregor. 1991. Combined chemical and enzymatic treatments of corn husks lignocellulosics. J. Sci. Food Agric. 56 : 195-214. https://doi.org/10.1002/jsfa.2740560209
  7. Beall, D. and L. Ingram. 1992. Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14 : 857-862. https://doi.org/10.1007/BF01029153
  8. de Vries J. H. M., A. Jansen, D. Kromhout, P. A. van de Bovenkamp, R.P. van Staveren, M.B. Mensink, and Katan. 1997. The fatty acid and sterol content of food composites of middle-aged men in seven countries. J. Food Comp. Anal. 10 : 115-141. https://doi.org/10.1006/jfca.1997.0525
  9. Force E. M., N. T. Dunford, and J. J. Salas. 2015. Sunflower: chemistry, production, processing, and utilization. AOACS Press, Urbana, IL. pp. 312-318.
  10. Harrabi, S., A. St-Amand, F. Sakouhi, K. Sebei, H. Kallel, P. Mayer, and M. Boukhchina, 2008. Phytostanols and phytosterols distributions in corn kernel. Food Chemistry. 111 : 115-120. https://doi.org/10.1016/j.foodchem.2008.03.044
  11. Hartmann M. A., A. -M. Perret, J. -P. Carde, C. Cassagne, and P. Moreau. 2002. Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacyglycerols. BBA. 1583 : 285-296.
  12. Jiang Y. Z. and T. Wang. 2005. Phytosterols in cereal byproducts. J. Am. Oil Chem. Soc. 82 : 439-444. https://doi.org/10.1007/s11746-005-1090-5
  13. Kim S. L., Y. K. Son, J. J. Hwang, J. Song, H. G. Moon. 2000. Varietal difference of unsaponifiables in maize. Korean J. Breed. 32(1) : 33-37.
  14. Kornfeldt A. and L. B. Croon. 1981. 4-Demethyl-, 4-monomethyl-, and 4,4'-dimethylsterols in some vegetable oils. Lipids. 16 : 306-314. https://doi.org/10.1007/BF02534954
  15. Liaw W., C. Chen, W. Chang, and K. Chen. 2008. Xylitol production fromrice strawhemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized candida subtropicalis WF79. J. Biosci. Bioeng. 105(2) : 97-105. https://doi.org/10.1263/jbb.105.97
  16. Lagarda M. J., G. Garcia-Llatas, and R. Farre. 2006. Analysis of phytosterols in foods. J. Pharm. Biomed. Anal. 41 : 1486-1496. https://doi.org/10.1016/j.jpba.2006.02.052
  17. Margaret S. and L. Yu. 2012. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans, Food Chemistry. 135 : 2789-2795. https://doi.org/10.1016/j.foodchem.2012.06.043
  18. Nes W. 1987. Multiple roles for phytosterols. In: P. Stumpf, Editor, The Metabolism. Structure and Function of Plant Lipids, Plenum Press, New York : pp. 3-9.
  19. Olsson L. and B. Hahn-Hagerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Tech. 18(5) : 312-331. https://doi.org/10.1016/0141-0229(95)00157-3
  20. Ostlund R. E., S. B. Racette, A. Okeke, and W. F. Stenson. 2002. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am. J. Clin. Nutr. 75 : 1000-1004. https://doi.org/10.1093/ajcn/75.6.1000
  21. Ostlund R. E., S. B. Racette, and W. F. Stenson. 2003. Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. Am. J. Clin. Nutr. 77(6) : 1385-1589. https://doi.org/10.1093/ajcn/77.6.1385
  22. Phillips, K. M., Ruggio, D. M., and M. Ashraf-Khorassani. 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 53 : 9436-9445. https://doi.org/10.1021/jf051505h
  23. Piironen V., D. G. Lindsay, T. A. Miettinen, J. Toivo, and A. Lampi. 2000. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 80 : 839-966.
  24. Rebecca E., B. Scholz, and K. H. Engel. 2013. Analysis of free phytosterols/stanols and their intact fatty acid and phenolic acid esters in various corn cultivars. J. Cereal Sci. 58 : 333-340. https://doi.org/10.1016/j.jcs.2013.07.011
  25. Rivera del Alamo R.M., G. Fregapane, F. Aranda, S. Gomez-Alonso, M.D. Salvador. 2004. Sterol and alcohol composition of Cornicabra virgin olive oil: the campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chemistry. 84 : 533-537. https://doi.org/10.1016/S0308-8146(03)00275-9
  26. Robert A. M., A.-M. Lampi, and K. B. Hicks. 2009. Fatty Acid, Phytosterol, and polyamine conjugate profiles of edible oils extracted from corn germ, corn fiber, and corn kernels. J. Am. Oil Chem. Soc. 86 : 1209-1214. https://doi.org/10.1007/s11746-009-1456-6
  27. Rouf S., T. P. Kamlesh, and K. Pradyuman. 2016. Maize-A potential source of human nutrition and health: A review. Cogent Food & Agriculture. 2 : 1166995-116703.
  28. St-Onge M. -P., B. Lamarche, J. -F. Mauger, J. H. Peter, Marie-Pierre. 2003. Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in Men. J. of Nutrition. 133(6) : 1815-1820. https://doi.org/10.1093/jn/133.6.1815
  29. Transparency Market Research. 2012. Phytosterols market (${\beta}$-Sitosterol, campesterol, stigmasterol, ergosterol) - global industry analysis, market size, share, growth and forecast, 2010-2018. https://www.transparencymarketresearch.com.
  30. Verleyen T., M. Forcades, R. Verhe, K. Dewettinck, A. Huyghebaert, and W. De Greyt. 2002. Analysis of free and esterified sterols in vegetable oils. J. Am. Oil Chem. Soc. 79 : 117-122. https://doi.org/10.1007/s11746-002-0444-3
  31. Zhou B. F., J. Stamler, B. Dennis, A. Moag-Stahlberg, N. Okuda, C. Robertson, L. Zhao, Q. Chan, and P. Elliott; INTERMAP Research Group. 2003. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: The INTERMAP Study. J. Hum Hypertens. 17 : 623-630. https://doi.org/10.1038/sj.jhh.1001605

Cited by

  1. 식물성 유지 10종에 대한 주요 Phytosterol 함량 분석 vol.34, pp.2, 2018, https://doi.org/10.9799/ksfan.2021.34.2.217
  2. 광평옥과 다청옥의 수이삭과 수염에서 안토시아닌 생합성 유전자 발현 분석 vol.66, pp.3, 2018, https://doi.org/10.7740/kjcs.2021.66.3.240