DOI QR코드

DOI QR Code

Evaluation of the Fermentation Ability of Lactic Acid Bacteria to Manufacture Highest Quality Rice Straw Silage

고품질 볏짚 사일리지 제조를 위한 다양한 유산균주 평가

  • Lee, In-Sok (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services) ;
  • Lee, Song-Yee (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services) ;
  • Choi, Min-Kyung (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services) ;
  • Kang, Chan-Ho (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services) ;
  • Kim, Jeong-Man (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
  • Received : 2018.02.19
  • Accepted : 2018.03.30
  • Published : 2018.06.30

Abstract

The main objective of this study was to determine the quality of rice straw silage made with various lactic acid bacteria (LAB) during fermentation. Five strains of LAB (Lactobacillus plantarum CMRT, L. leuconostoc mesenteroides M17, L. sakei C11, M5, SP2) were used in this study. With regard to odor, ready-made CMRT (a comparison strain) had the highest value from 10-60 days, followed by M17. The pH level of all silages made with five strains (apart from CMRT) ranged from 4.02 to 4.59. Of these, M17 rapidly lowered the pH value in the silage. Crude protein (CP) content was significantly lower (p < 0.01) in ready-made CMRT compared to the other bacteria. C11 fermentation produced the highest content of silage, with a score of 5.56. Acetic acid and butyric acid were not detected in any of the silage products. The lactic acid levels in silages produced by M17, M5, C11, and SP2 were comparatively higher than that produced by CMRT. The total digestible nutrient (TDN) content levels and relative fees value (RFV) were he highest in the silage of C11 (69.65 and 155.56, respectively), followed by M17. Based on odorl, pH, protein, organic acid, and feed value, we suggest tha the M17 strain is a suitable substitute for CMRT that can be used to generate high quality rice straw silage.

현재 국내에는 C사에서 생산하는 한 종의 사일리지 제조 유산균이 있다. 본 연구는 이를 대체할 균주를 선발하기 위해서 사일리지의 특성과 사료가치를 분석하였다. C사의 유산균(CMRT, 비교균주)보다 우수한 균주를 선발하기 위해 김치에서 발견한 유산균 4종(Lactobacillus. leuconostoc mesenteroides M17, L. sakei C11, M5, SP2)을 이용하였다. 성장속도를 측정할 수 있는 흡광도는 L. sakei C11이 가장 높았고, 향은 M17이 제조 20일부터 비교균주와 유사하였다. M17의 pH는 비교 균주보다 낮았다. 단백질 함량은 M17의 사일리지에서 비교균주의 사일리지보다 유의성 있는 증가를 보였다. 유기산 중 초산과 낙산은 검출되지 않았고 젖산은 4개의 선발균주가 비교균주보다 높았다. 4개의 선발 균주 ADF와 NDF의 함량은 비교균주와 비교시 각각11~24% 및 13~20% 낮아 유의성(p < 0.05)있는 차이를 보였다. 비교균주 TDN은 평균 63.44%로 4개의 선발균주의 TDN 값(66.05~69.65)보다 낮은 유의성(p < 0.05)있는 감소를 보였다. 한편 상대사료가치(RFV)는 비교균주 사일리지에서 107.35로 2등급(RFV 124~103)에 해당하는 품질이었으나 4개의 선발 균주 사일리지는 특(RFV 151 이상)~1등급(RFV 125~150)에 해당하여 선발 균주의 사일리지가 품질이 우수한 것으로 조사되었다. 이상의 결과를 종합하여 볼 때, 선발 균주 중 M17에 의해 제조된 사일리지는 비교균주(CMRT) 사일리지 보다 pH, ADF 및 NDF가 낮고, 단백질, 젖산 및 상대사료가치가 높아 고품질의 사일리지 생산이 가능할 것으로 판단되었다.

Keywords

References

  1. A. O. A. C. 1995. Official method of analysis (15th ed.). Association of Official Analytical Chemists, Arlington, VA. Washington D. C.
  2. Choi, K. C., N. C. Jo, M. W. Jung, K. D. Lee, J. G. Kim, Y. C. Lim, W. H. Kim, Y. K. Oh, J. H. Choi, C. M. Kim, D. K. Jung, J. M. Choi, and H. G. Kim. 2011. Effect of harvest stage of corn on nutritive values and quality of roll baled corn silage manufactured with corn grown in paddy land. Journal of the Korean Society of Grassland and Forage Science. 31(1) : 65-74. https://doi.org/10.5333/KGFS.2011.31.1.65
  3. Duniere, L., J. Sindou, F. Chaucheyras-Durand, I. Chevallier, and D. Thevenot-Sergentet. 2013. Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science Technology. 182 : 1-15. https://doi.org/10.1016/j.anifeedsci.2013.04.006
  4. Goering, H.K., and Van Soest, P.J. 1970. Forage fiber analysis. Agic. Handbook 379, U. S. Gov. Print. Office, Washington, D. C.
  5. Gordon, F. 1989. An evaluation through lactating cattle of a bacterial inoculant as an additive for grass silage. Grass and Forage Science. 44 : 169-179. https://doi.org/10.1111/j.1365-2494.1989.tb01924.x
  6. Keady, T. W. J. and J. J. Murphy. 1996. Effects of inoculant treatment on ryegrass silage fermentation, digestibility, rumen fermentation, intake and performance of lactating dairy cattle. Grass and Forage Science. 51 : 232-241. https://doi.org/10.1111/j.1365-2494.1996.tb02058.x
  7. Kennedy, S. J., H. I. Gracey, E. F. Unsworth, R. W. J. Steen, and R. Anderson. 1989. Evaluation studies in the development of a commercial bacterial inoculant as an additive for grass silage. 2. Responses in finishing cattle. Grass and Forage Science. 44 : 371-380. https://doi.org/10.1111/j.1365-2494.1989.tb01935.x
  8. Kim, H. S. 1991. Studies on the viability of lactobacillus acidophilus IFO 3205 by microencapsulation. Ph.D. thesis. Seoul. Korea.
  9. Kim, J. G. 1999. Effect of harvest maturity and management practices on quality of round baled rye silage. Seoul National University. Ph. D. Thesis.
  10. Kim, J. K., J. S. Ham, E. S. Chung, H. S. Park, J. K. Lee, M. W. Jung, K. C.Choi, N. C. Jo, and S. Seo. 2009. Evaluation of fermentation ability of microbes for whole crop barly silage inoculant. Journal of the Korean Society of Grass and Forage Science. 29(3) : 235-244. https://doi.org/10.5333/KGFS.2009.29.3.235
  11. Kim, J. K., J. S.Ham, E. S.Chung, S. H. Yoon, M. J. Kim, H. S. Park, Y. C. Lim, and S. Seo. 2008. Evaluation of fermentation ability of microbes for whole crop rice silage inoculant. Journal of the Korean Society of Grass and Forage Science. 28(3) : 229-236. https://doi.org/10.5333/KGFS.2008.28.3.229
  12. Kim, J. G., H. S. Park, S. H. Lee, J. S. Jung, K. W. Lee, and H. J. Ko. 2015. Evaluation of productivity and silage quality for domestically developed forage crops in Korea. Journal of the Korean Society of Grassland and Forage Science. 35(2) : 145-151. https://doi.org/10.5333/KGFS.2015.35.2.145
  13. Korea Rural Economic Institute (KREI). 2015. 2015 KREI Research Report. KERI.
  14. Lee, H. l., Y. J. Choi, L. Mamuad, E. J. Kim, Y. K. Oh, K. K. Park, and S. S. Lee. 2014. Effect of heterofermentative lactic acid bacteria on the quality of italian ryegrass and whole-crop barley silage. Journal of the Korean Society of Grass and Forage Science. 34(4) : 269-276. https://doi.org/10.5333/KGFS.2014.34.4.269
  15. Linn, J. G., P. M. Neal, W. T. Howard, and D. A. Rohweder. 1987. Relative feed value as a measure of forage quality. Minnesota Forage UPDATE. Vol XII, No 4. pp 2, 4, Minnesota Forage and Grassland Council.
  16. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2013. The current situation of forage increase production and supplementation policy. pp.2-5.
  17. Ogawa, M. 2003. Research of whole crop rice silage utilization in Japan. Animal Technology Research Laboratory. International Seminar Proceedings. 25-58.
  18. Patterson, D. C., C. S. Mayne, F. J. Gordon, and D. J. Kilpatrick. 1997. An evaluation of an inoculant/enzyme preparation as an additive for grass silage for dairy cattle. Grass and Forage Science. 52 : 325-335. https://doi.org/10.1111/j.1365-2494.1997.tb02363.x
  19. Pitt, R. E. 1990. Silage and hay preservation. National, Agriculture and Engineering Service (NRAES). Cooperative Extension. Cornell University.
  20. Weinberg, Z. G. and R. E. Muck. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Review. 19 : 53-68.
  21. Wilkinson, J. M. and D. R. Davies. 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Science. 68 : 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x