DOI QR코드

DOI QR Code

영일만 해상 CO2 주입 실증 사이트에서의 주입 전 모니터링 탐사 예비결과

Preliminary Results of the Pre-injection Monitoring Survey at an Offshore CO2 Injection Site in the Yeongil Bay

  • 투고 : 2018.05.11
  • 심사 : 2018.06.08
  • 발행 : 2018.06.30

초록

포항분지 해상 중규모 실증 모니터링 연구팀은 영일만의 해상 $CO_2$ 주입 실증 사이트에서 주입되는 $CO_2$를 모니터링하기 위하여 지구물리-지화학 복합 모니터링 연구를 수행하고 있다. 이 연구에서는 주입 전 모니터링 탐사의 1차 결과로서, 지구물리 탐사에서는 한국형 Hydro-Geophone OBS (Ocean Bottom Sensor) 탐사장비 개발 현황과 3D 탄성파 탐사의 결과를, 천부 지화학 탐사에서는 주입사이트의 주입 전지화학 베이스라인 탐사(퇴적물 공극수의 음이온)에 대한 예비결과를 제시하였다.

In the demonstration-scale offshore $CO_2$ storage project, the monitoring team studies geophysical and geochemical monitoring of $CO_2$ injections in the Yeongil Bay, in which a $CO_2$ test injection (about 100t) was performed in January, 2017 and further injections in larger scales are planned for 2018 and 2019. In this study, the development status of the Korea-type Hydro-Geophone OBS (Ocean Bottom Sensor) and the geochemical baseline survey (focused on some anions of sediment pore water) are suggested as the preliminary results of the pre-injection test.

키워드

참고문헌

  1. Berner, R.A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, 241p.
  2. Blair, N.E., Aller, R.C., 1995, Anaerobic methane oxidation on the Amazon shelf, Geochimica et Cosmochimica Acta, 59(18), 3707-3715. https://doi.org/10.1016/0016-7037(95)00277-7
  3. Borowski, W.S., Pauli, C.K., Ussler III, W., 1996, Marine pore water sulfate profiles indicate in situ methane flux from underlying gas hydrate, Geology, 24(7), 655-658. https://doi.org/10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
  4. Borowski, W.S., Paull, C.K., Ussler III, W., 1999, Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Marine Geology, 159(1-4), 131-154. https://doi.org/10.1016/S0025-3227(99)00004-3
  5. Catling, D.C., Claire, M.W., Zahnle, K.J., 2007, Anaerobic methanotrophy and the rise of atmospheric oxygen, Philosophical Transactions of the Royal Society of London, Series A, 365(1856), 1867-1888. https://doi.org/10.1098/rsta.2007.2047
  6. Cheon, Y., Son, M., Song, C.W., Kim, J.-S., Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16(3), 253-273. https://doi.org/10.1007/s12303-012-0029-0
  7. Claypool, G.E., Kaplan, I.R., 1974, The origin and distribution of methane in marine sediments, In: Kaplan I. R. (Ed.), Natural Gases in Marine Sediments, Plenum Press, New York, 99-139.
  8. Gieskes, J.M., Gamo, T., Brumsack, H., 1991, Chemical methods for interstitial water analysis aboard JOIDES Resolution, Ocean Drilling Program Technical Note 15, College Station, Texas, Ocean Drilling Program, 60p.
  9. Kastner, M., Claypool, G., Robertson, G., 2008, Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico, Marine and Petroleum Geology, 25(9), 860-872. https://doi.org/10.1016/j.marpetgeo.2008.01.022
  10. KIGAM, 2014, Characterization of storage strata and development of basis design technology for demonstration of $CO_2$ geological storage, Korea Institute of Geoscience and Mineral Resources, GP2012-030-2014(2), 441p (in Korean with English abstract).
  11. Kim, J.H., Park, M.H., Chun, J.H., Lee, J.Y., 2011, Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane, Geo-Marine Letters, 31(1), 37-49. https://doi.org/10.1007/s00367-010-0214-y
  12. Kim, J.H., Torres, M.E., Lee, J.Y., Hong, W.-L., Holland, M., Park, M.H., Choi, J., Kim, G.-Y., 2013, Depressurization experiment of pressure cores from the central Ulleung Basin, East Sea: Insights into gas chemistry, Organic Geochemistry, 62, 86-95. https://doi.org/10.1016/j.orggeochem.2013.07.010
  13. Kwon, Y.K., 2017, Demonstration-scale Offshore $CO_2$ Storage Project in Pohang Basin, Korea, Kongju National University, Project Plan Report, 316p (in Korean).
  14. Reeburgh, W.S., 1976, Methane consumption in Cariaco Trench waters and sediments, Earth and Planetary Science Letters, 28(3), 337-344. https://doi.org/10.1016/0012-821X(76)90195-3
  15. Reeburgh, W.S., 1982, A major sink and flux control for methane in marine sediments: anaerobic consumption, In: Fanning, K.A., Manheim, F.T. (Eds.), The Dynamic Environment of the Ocean Floor, D. C. Heath, Lexington, Massachusetts, 203-217.
  16. Sohn, Y.K., Son, M., 2004, Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea, Sedimentology, 51(6), 1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
  17. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H., Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their implications, Korean Journal of Petroleum Geology, 13, 1-16 (in Korean with English abstract).
  18. Wang Y., Grion, S., Bale, R., 2009, What comes up must have gone down: the principle and application of up-down deconvolution for multiple attenuation of ocean bottom data, CSEG Recorder, 34(10), 10-16.
  19. Whiticar, M.J., 1999, Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chemical Geology, 161(1-3), 291-314. https://doi.org/10.1016/S0009-2541(99)00092-3

피인용 문헌

  1. 다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략 vol.23, pp.1, 2020, https://doi.org/10.7582/gge.2020.23.1.038
  2. 환경스트레스 모델을 통한 해양탐사·조사선의 격자형 운항방식과 운항요인 상관관계에 관한 연구 vol.26, pp.6, 2018, https://doi.org/10.7837/kosomes.2020.26.6.634
  3. 이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정 vol.24, pp.3, 2018, https://doi.org/10.7582/gge.2021.24.3.078
  4. Development of a portable 3D seismic survey system for nearshore surveys and the first case study offshore Pohang, South Korea vol.42, pp.4, 2018, https://doi.org/10.1007/s11001-021-09453-x