DOI QR코드

DOI QR Code

Dispersion-managed Links with the Irregular Distribution of the Lengths and Dispersion Coefficients of the SMFs and the DCFs

SMF와 DCF의 길이와 분산 계수가 불규칙하게 분포하는 분산 제어 링크

  • Lee, Seong-Real (Division of Navigational Information System, Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Received : 2018.06.03
  • Accepted : 2018.06.19
  • Published : 2018.06.30

Abstract

A flexible dispersion-managed link configuration is proposed by using single-mode fibers (SMFs) and dispersion-compensating fibers (DCFs) with irregular dispersion coefficients and lengths over all fiber spans for compensating of WDM channels distortion due to the group velocity dispersion and nonlinear effects of optical fibers. The flexibility of link is enabled by artificially distributing of these fibers based on the dispersion coefficients of DCFs in each half transmission section. The simultaneous ascending and descending (AD) distribution of the DCF's coefficients before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link. Therefore, to improve the compensation effect of the distorted WDM channels, AD distribution is needed to choice regardless of fiber lengths and the residual dispersion per span and fiber's dispersion coefficients.

전체 광 중계 구간 모두 불규칙한 분산 계수를 갖는 단일 모드 광섬유와 분산 보상 광섬유 (DCF; dispersion compensating fiber)를 이용한 융통적인 분산 제어 링크 구조를 제안하였다. 링크의 융통적 구성은 각 전송 반 구획에서 DCF의 분산 계수를 기준으로 이들을 인위적으로 분포시켜서 가능하게 하였다. 광 위상 공액기 전의 전송 반 구획에서는 DCF의 분산 계수를 점진적으로 증가시키고, 광 위상 공액기 다음의 전송 반 구획에서는 DCF의 분산 계수를 점진적으로 감소시키는 'AD' 분포에서 왜곡된 파장 분할 다중(WDM; wavelength division multiplexed) 신호가 최상으로 보상되는 것을 확인하였다. 따라서 왜곡된 WDM 채널의 보상 효과를 더욱 증가시키기 위해서는 광섬유의 길이, 중계 구간 당 잉여 분산뿐만 아니라 광섬유의 분산 계수에 상관없이 'AD' 분포를 선택할 필요가 있다는 것을 확인하였다.

Keywords

References

  1. M. D. Pelusi, “WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers,” IEEE Photonics Technology Letters, Vol. 25, No. 1, pp. 71-74, 2013. https://doi.org/10.1109/LPT.2012.2226440
  2. M. F. Uddin, A. B. M. N. Doulah, A. B. M. I. Hossain, M. Z. Alam, and M. N. Islam, "Reduction of four-wave mixing effect in an optical wavelength-division multiplexed system by utilizing different channel spacing and chromatic dispersion schemes," Optical Engineering, Vol. 42, No. 9, pp. 2761-2767, 2003. https://doi.org/10.1117/1.1597887
  3. X. Xiao, C. Yang, S. Gao, and Y. Tian, “Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry,” Optics Communications, Vol. 265, No. 1, pp. 326-330, 2006. https://doi.org/10.1016/j.optcom.2006.03.007
  4. A. Chowdhury and R. J. Essiambre, “Optical phase conjugation and pseudolinear transmission,” Optics Letters, Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  5. P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Optics Express, Vol. 13, No. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  6. P. M. Lushnikov, “Oscillating tails of a dispersion-managed soliton,” Journal of the Optical Society of America B, Vol. 21, No. 11, pp. 1913-1917, 2004. https://doi.org/10.1364/JOSAB.21.001913
  7. X. Tang and Z. Wu, "Reduction of intrachannel nonlinearity using optical phase conjugation," IEEE Photonics Technology Letters, Vol. 17, No. 9, pp. 1863-1865, 2005. https://doi.org/10.1109/LPT.2005.853241
  8. M. A. Talukder, and M. N. Islam, "Performance of bi-end compensation in a wavelength-division multiplexed system considering the effect of self phase modulation," Optical Engineering, Vol. 44, No. 11, pp. 115005-1-115055-6, 2005. https://doi.org/10.1117/1.2128631
  9. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", Journal of Lightwave Technology, Vol. 14, No. 3, pp 243-248, 1996. https://doi.org/10.1109/50.485581
  10. S. R. Lee, “Effects of residual dispersion in half transmission section on net residual dispersion in optical transmission links with dispersion management and mid-span spectral inversion compensation characteristics of distorted WDM signals depending on distribution patterns of SMF length and RDPS,” Journal of Advanced Navigation Technology, Vol. 18, No. 5, pp. 455-460, 2014. https://doi.org/10.12673/jant.2014.18.5.455
  11. S. R. Lee, "Dispersion managed optical transmission links with an artificial distribution of the SMF length and residual dispersion per span," Journal of Information and Communication Convergence Engineering (JICCE), Vol. 12, No. 2, pp. 75-82, June 2014. https://doi.org/10.6109/jicce.2014.12.2.075
  12. S. R. Lee, “Compensation for the distorted WDM channels in the long-haul transmission link with the randomly distributed SMF lengths and RDPS,” Journal of Advanced Navigation Technology, Vol. 19, No. 4, pp. 323-329, Aug. 2015. https://doi.org/10.12673/jant.2015.19.4.323
  13. R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, "Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber, IEEE Photonics Technology Letters, Vol. 12, No. 12, pp. 1624-1626, 2000. https://doi.org/10.1109/68.896328
  14. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  15. N. Kikuchi and S. Sasaki, "Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems," Journal of Lightwave Technology, Vol. 13, No. 5, pp. 868-878. 1995. https://doi.org/10.1109/50.387804