DOI QR코드

DOI QR Code

The Quantification of TiO2 Thickness Using Color Values by Spectrophotometer and Chromameter

분광측색계, 색차계의 색 수치 값을 이용한 타이타늄 산화막의 두께 정량화

  • 이다영 (인하대학교 화학.화학공학 융합학과) ;
  • 한아영 ((주) 영광 YKMC) ;
  • 하동흔 (인하대학교 화학.화학공학 융합학과) ;
  • 유현석 (인하대학교 화학.화학공학 융합학과) ;
  • 김훈식 ((주) 영광 YKMC) ;
  • 정나겸 ((주) 영광 YKMC) ;
  • 장관섭 ((주) 영광 YKMC) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2018.06.13
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

The anodic $TiO_2$ layers which are prepared in various anodization conditions exhibit their specific color depending on the thickness of $TiO_2$. In this study, the relationship between the color of $TiO_2$ layer, which is grown by PEO (Plasma electrolytic oxidation), and the thickness of the $TiO_2$ layer is investigated. To evaluate the color change of the $TiO_2$ layer, the value of color ($dE^*ab$) is measured and calculated by spectrophotometer and chromameter. As a result, it is found that $dE^*ab$ values and thickness of $TiO_2$ layers form a linear relationship with meaningful formular. This formula can be helpful to quantify the thickness of the $TiO_2$ layer by the numerical $dE^*ab$ values. In this process, the spectrophotometer shows more precise results than the chromameter dose. If fluoride ions ($F^-$) are included in the electrolyte, it will affect the $dE^*ab$ values of the $TiO_2$. layer. This is against the propensity, which is analyzed by XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). It is important that the formular suggested in this study provides other metals which can be also anodized with the possibility of quantifying the thickness of the $TiO_2$ layer by the $dE^*ab$ values.

Keywords

References

  1. J. M. Macak, H. Tsuchiya, P. Schmuki, Highaspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew Chem. Int. Ed. Engl. 44 (2005) 2100-2102. https://doi.org/10.1002/anie.200462459
  2. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 (2011) 3331-3334.
  3. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Transparent highly ordered $TiO_2$ nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater. 15 (2005) 1291-1296. https://doi.org/10.1002/adfm.200500096
  4. R. Beraneka, H. Hildebrand, P. Schmuki, Selforganized porous titanium oxide prepared in $H_2SO_4$/HFelectrolytes, Electrochem. Solid-State Lett. 6 (2003) B12-B14. https://doi.org/10.1149/1.1545192
  5. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, C. A. Grimes, $TiO_2$ nanotube arrays of $1000{\mu}m$ length by anodization of titanium foil:Phenol red diffusion, J. Phys. Chem. C 111 (2007) 14992-14997. https://doi.org/10.1021/jp075258r
  6. A.L. Yerokhin, A. Leyland, A. Matthews, Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation, Appl. Surf. Sci. 200 (2002) 172-184. https://doi.org/10.1016/S0169-4332(02)00848-6
  7. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Technol. 130 (2000) 195-206. https://doi.org/10.1016/S0257-8972(00)00719-2
  8. L.O Snizhko, A.L Yerokhin, A Pilkington, N.L Gurevina, D.O Misnyankin, A Leyland, A Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta. 49 (2004) 2085-2095. https://doi.org/10.1016/j.electacta.2003.11.027
  9. Ji. Zhao, X. Wang, R. Chen, L. Li, Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Commun. 134 (2005) 705-710. https://doi.org/10.1016/j.ssc.2005.02.028
  10. J. Serup, T. Agner, Colorimetric quantification of erythema-a comparison of two colorimeters (Lange micro color and minolta chroma meter CR?200) with a clinical scoring scheme and laser-Doppler flowmetry, Clin. Exp. Dermatol. 15 (1990) 267-272. https://doi.org/10.1111/j.1365-2230.1990.tb02087.x
  11. D. Ha, J. Choi, Optimization of pretreatment conditions for Ti surface in the low voltage PEO anodization process, J. Korean Inst. Surf. Eng. 50 (2017) 439-445.
  12. A. Fullerton, T. Fischer, A. Lahti, K.?P. Wilhelm, H. Takiwaki, J. Serup, Guidelines for measurement skin colour and erythema A report from the standardization group of the european society of contact dermatitis, Contact Derm. 35 (1996) 1-10.
  13. C. Evangelisti , M. Hayatifar, F. Marchetti, M. Marelli, G. Pampaloni, F. Piccinelli, Synthesis of nanocrystalline $TiOF_2$ embedded in a carbonaceous matrix from $TiOF_2$ and d-Fructose, Inorg. Chem. 55.4 (2016) 1816-1820. https://doi.org/10.1021/acs.inorgchem.5b02715
  14. Y. Zhang, T. Xia, M. Shang, P. Wallenmeyer, D. Katelyn, A. Peterson, J. Murowchick, L. Dongcd, X. Chen, Structural evolution from $TiO_2$ nanoparticles to nanosheets and their photocatalytic performance in hydrogen generation and environmental pollution removal, RSC Adv. 4.31 (2014) 16146-16152. https://doi.org/10.1039/C3RA48066F
  15. V.G. Kuryavyi, A.Yu. Ustinov, D.P. Opra, G.A. Zverev, T.A. Kaidalova, Composite containing nanosized titanium oxide and oxyfluoride and carbon synthesized in plasma of pulse high-voltage discharge, Mater. Lett. 137 (2014) 398-400. https://doi.org/10.1016/j.matlet.2014.09.007