Abstract
Departure Manager (DMAN) is a tool to optimize the departure sequence and to suggest appropriate take-off time and off-block time of each departure aircraft to the air traffic controllers. To that end, Variable Taxi Time (VTT), which is time duration of the aircraft from the stand to the runway, should be estimated. In this paper, a study for development of VTT prediction algorithm based on machine learning techniques is presented. The factors affecting aircraft taxi speeds were identified through the analysis of historical traffic data on the airport surface. The prediction model suggested in this study consists of several sub-models that reflect different types of surface maneuvers based on the analysis result. The prediction performance of the proposed method was evaluated using the actual operational data.